Assessment comparison of commercial TiO2 and TiO2 sol-gel on the degradation of caffeine using artificial radiation

Abstract

The presence of endocrine disrupting compounds in water receptor bodies, such as drugs, currently has in scientific field a great focus of studies focused on advanced water treatment techniques that enable the decontamination of water sources and public supply. In this context, this study focused on the characterization and evaluation of photocatalytic activity of catalysts calcined and uncalcined synthesized TiO2 and the commercial sol-gel route from caffeine degradation. The photocatalysts were characterized by N2 physisorption, X-ray diffraction, scanning electron microscopy (SEM/EDS), photoacoustic spectroscopy, and infrared spectroscopy (FTIR). They seek to evaluate the main textural, structural, chemical, and morphological differences that the method of synthesis can promote in obtaining a titanium oxide-based catalyst. Thus, the results of this study demonstrate that the synthesis method significantly influences the activity of the materials and that calcined TiO2 catalyst prepared using the sol-gel method has promising photocatalytic capabilities for the elimination of drugs such as caffeine when present in wastewater.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Al-Johani MS, Al-zaghayer YS, Al-Mayman SI (2015) TiO2/ZnO photocatalytic activity for hydrogen production. Int Sci J Environ Sci 4:1–8

    Google Scholar 

  2. Almeida LN, Lenzi G, Pietrobelli JMT, Santos OA (2019) Caffeine degradation using ZnO and Ag/ZnO under UV and solar radiation. Desalin Water Treat 153:85–94. https://doi.org/10.5004/dwt.2019.24045

    CAS  Article  Google Scholar 

  3. Alves GC, Costa PA, Ferrari-Lima AM, Machado NRCF, Santana VS, Marques RG (2013) Efeito da temperatura de calcinação na atividade fotocatalítica do TiO2 na degradação do fenol. Rev Eng Química e Tecnol 5:54–63

    Google Scholar 

  4. Ananpattarachai J, Kajitvichyanukul P, Seraphin S (2009) Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants. J Hazard Mater 168:253–261. https://doi.org/10.1016/j.jhazmat.2009.02.036

    CAS  Article  Google Scholar 

  5. Araña J, González OD, Miranda MS, Doña JMR, Herrera JAM, Pérez JP (2001) Photocatalytic degradation of formic acid using Fe/TiO2 catalysts: the role of Fe3+/Fe2+ ions in the degradation mechanism. Appl Catal B Environ 32:49–61. https://doi.org/10.1016/S0926-3373(00)00289-7

    Article  Google Scholar 

  6. Arfanis MK, Adamou P, Moustakas NG et al (2017) Photocatalytic degradation of salicylic acid and caffeine emerging contaminants using titania nanotubes. Chem Eng J 310:525–536

    CAS  Article  Google Scholar 

  7. Battaglin WA, Bradley PM, Iwanowicz L, Journey CA, Walsh HL, Blazer VS (2018) Pharmaceuticals, hormones, pesticides, and other bioactive contaminants in water, sediment, and tissue from Rocky Mountain National Park, 2012–2013. Sci Total Environ 643:651–673. https://doi.org/10.1016/j.scitotenv.2018.06.150

    CAS  Article  Google Scholar 

  8. Beltrame KK, Cazetta AL, Souza PS et al (2018) Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves. Ecotoxicol Environ Saf 147:64–71

    CAS  Article  Google Scholar 

  9. Beninca C (2012) Degradação do corante alimentício Ponceau 4R e tratamento de efluente de uma indústria de alimentos utilizando processos oxidativos avançados. Universidade Federal do Paraná, Curitiba

    Google Scholar 

  10. Bouzoura MB, Battie Y, Naciri AE, Araiedh F, Ducos F, Chaoui N (2019) N2+ ion bombardment effect on the band gap of anatase TiO2 ultrathin films. Opt Mater (Amst) 88:282–288. https://doi.org/10.1016/j.optmat.2018.11.045

    CAS  Article  Google Scholar 

  11. Colmenares JC, Aramendía MA, Marinas A, Marinas JM, Urbano FJ (2006) Synthesis, characterization and photocatalytic activity of different metal-doped titania systems. Appl Catal A Gen 306:120–127. https://doi.org/10.1016/j.apcata.2006.03.046

    CAS  Article  Google Scholar 

  12. Colpini LMS, Alves HJ, dos Santos OAA, Costa CMM (2008) Discoloration and degradation of textile dye aqueous solutions with titanium oxide catalysts obtained by the sol-gel method. Dyes Pigments 76:525–529. https://doi.org/10.1016/j.dyepig.2006.10.014

    CAS  Article  Google Scholar 

  13. Daneshvar N, Salari D, Khataee AR (2004) Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J Photochem Photobiol A Chem 162:317–322

    CAS  Article  Google Scholar 

  14. Dolat D, Mozia S, Wróbela RJD, Moszy’nskia BO, Guskosc N, Morawskiaa AW (2015) Nitrogen-doped, metal-modified rutile titanium dioxide as photocatalysts for water remediation. Inst Appl Catal B Environ 162:310–318. https://doi.org/10.1016/j.apcatb.2014.07.001

    CAS  Article  Google Scholar 

  15. Fouladi AA, Hassanzadeh-Tabrizi SA, Saffar-Teluri A (2018) Sol-gel synthesis and characterization of TiO2-CdO-Ag nanocomposite with superior photocatalytic efficiency. Ceram Int 44:4292–4297. https://doi.org/10.1016/j.ceramint.2017.12.016

    CAS  Article  Google Scholar 

  16. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582. https://doi.org/10.1016/j.surfrep.2008.10.001

    CAS  Article  Google Scholar 

  17. Gharagozlou M, Bayati R (2015) Photocatalytic characteristics of single phase Fe-doped anatase TiO2 nanoparticles sensitized with vitamin B12. Mater Res Bull 61:340–347. https://doi.org/10.1016/j.materresbull.2014.10.043

    CAS  Article  Google Scholar 

  18. Gharagozlou M, Naghibi S (2016) Sensitization of ZnO nanoparticle by vitamin B12: investigation of microstructure, FTIR and optical properties. Mater Res Bull 84:71–78. https://doi.org/10.1016/j.materresbull.2016.07.029

    CAS  Article  Google Scholar 

  19. Ghiselli G (2006) Avaliação da qualidade das águas destinadas ao abastecimento público na região de Campinas: ocorrência e determinação dos interferentes endócrinos e produtos farmacêuticos e de higiene pessoal. Universidade Estadual de Campinas, Campinas

    Google Scholar 

  20. Ghosh M, Manoli K, Shen X et al (2019) Solar photocatalytic degradation of caffeine with titanium dioxide and zinc oxide nanoparticles. J Photochem Photobiol A Chem 377:1–7. https://doi.org/10.1016/j.jphotochem.2019.03.029

    CAS  Article  Google Scholar 

  21. Gomez MJ, Bueno MJM, Lacorte S, Fernandez-Alba AR, Aguera A (2007) Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast. Chemosphere 66:993–1002. https://doi.org/10.1016/j.chemosphere.2006.07.051

    CAS  Article  Google Scholar 

  22. Haider AJ, Anbari RHA, Kadhim GR, Salame CT (2017) Exploring potential environmental applications of TiO2 nanoparticles. Energy Procedia 119:332–345. https://doi.org/10.1016/j.egypro.2017.07.117

    CAS  Article  Google Scholar 

  23. Heise C (2009) Opção ecológica para desbotar tecidos. Textília 1:30

    Google Scholar 

  24. Hung W, Chen Y, Chu H, Tseng T (2008) Synthesis and characterization of TiO2 and Fe/TiO2 nanoparticles and their performance for photocatalytic degradation of 1,2-dichloroethane. Appl Surf Sci 255:2205–2213. https://doi.org/10.1016/j.apsusc.2008.07.079

    CAS  Article  Google Scholar 

  25. Ishiyama T, Nakagawa S, Wakamatsu T (2016) Growth of epitaxial silicon nanowires on a Si substrate by a metal-catalyst-free process. Sci Rep 6:1–8. https://doi.org/10.1038/srep30608

    CAS  Article  Google Scholar 

  26. JCPDS–Joint Commite on Powder Diffraction Standars 1995 International Center of Diffraction Data, Pensilvânia, USA, (CDROM)

  27. Jjemba PK (2006) Excretion and ecotoxicity of pharmaceutical and personal care products in the environment. Ecotoxicol Environ Saf 63:113–130. https://doi.org/10.1016/j.ecoenv.2004.11.011

    CAS  Article  Google Scholar 

  28. Keerthana BGT, Solaiyammal T, Muniyappan S, Murugakoothan P (2018) Hydrothermal synthesis and characterization of TiO2 nanostructures prepared using different solvents. Mater Lett 220:20–23. https://doi.org/10.1016/j.matlet.2018.02.119

    CAS  Article  Google Scholar 

  29. Kitture R, Koppiar SJ, Kaul-Ghanekar R, Kale SN (2011) Catalyst efficiency, photostability and reusability study of ZnO nanoparticles in visible light for dye degradation. J Phys Chem Solids 72:60–66. https://doi.org/10.1016/j.jpcs.2010.10.090

    CAS  Article  Google Scholar 

  30. Kumar K, Chitkara M, Sandhu IS, Mehta D, Kumar S (2014) Photocatalytic, optical and magnetic properties of Fe-doped ZnO nanoparticles prepared by chemical route. J Alloys Compd 588:681–689. https://doi.org/10.1016/j.jallcom.2013.11.127

    CAS  Article  Google Scholar 

  31. Larumbe S, Monge M, Gomez-Polo C (2015) Comparative study of N, Fe doped TiO2 photocatalysts. Appl Surf Sci 327:490–497. https://doi.org/10.1016/j.apsusc.2014.11.137

    CAS  Article  Google Scholar 

  32. Lassoued MS, Lassoued A, Ammar S, Gadri A, Salah AB, García-Granda S (2018) Synthesis and characterization of co-doped nano-TiO2 through co-precipitation method for photocatalytic activity. J Mater Sci Mater Electron 29:8914–8922. https://doi.org/10.1007/s10854-018-8910-x

    CAS  Article  Google Scholar 

  33. Lazaro S, Penteado RF, Techerani M, Berger D, Varela JA, Kubaski ET (2012) Energia de superfície para nanossuperfícies de TiO2 na direção (2001). Quim Nova 35:920–923. https://doi.org/10.1590/S0100-40422012000500011

    Article  Google Scholar 

  34. Lenzi GG, Fávero CVB, Colpini LMS, Bernabe H, Baesso ML, Specchia S, Santos OAA (2011) Photocatalytic reduction of Hg(II) on TiO2 and Ag/TiO2 prepared by the sol-gel and impregnation methods. Desalination 270:241–247. https://doi.org/10.1016/j.desal.2010.11.051

    CAS  Article  Google Scholar 

  35. Linley S, Liu Y, Ptacek CJ, Blowes DW, Gu FX (2014) Recyclable graphene oxide-supported titanium dioxide photocatalysts with tunable properties. Appl Mater Interfaces 6:4658–4668. https://doi.org/10.1021/am4039272

    CAS  Article  Google Scholar 

  36. Lozano RP, García YAG, Tafalla DB, Albaladejo MF (2007) Cafeína: un nutriente, un fármaco, o una droga de abuso. Adicciones 19:225–238

    Article  Google Scholar 

  37. Luna R, Solis C, Ortiz N, Galicia A, Sandoval F, Zermeño B, Moctezuma E (2018) Photocatalytic degradation of caffeine in a solar reactor system. Int J Chem React Eng 16:1–10. https://doi.org/10.1515/ijcre-2017-0126

    CAS  Article  Google Scholar 

  38. Marques RRN, Sampaio MJ, Carrapiço PM, Silva CG, Morales-Torres S, Drazic G, Faria JL, Silva AMT (2013) Photocatalytic degradation of caffeine: developing solutions for emerging pollutants. Catal Today 209:108–115. https://doi.org/10.1016/j.cattod.2012.10.008

    CAS  Article  Google Scholar 

  39. Mihalache V, Cernea M, Pasuk I (2017) Relationship between ferromagnetism and, structure and morphology in un-doped ZnO and Fe-doped ZnO powders prepares by hydrothermal route. Curr Apllied Phys 17:1127–1135

    Article  Google Scholar 

  40. Moradi S, Aberoomand-Azar P, Raeis-Farshid S, Abedini-Khorrami S, Givianrad HM (2016) The effect of different molar ratios of ZnO on characterization and photocatalytic activity of TiO2/ZnO nanocomposite. J Saudi Chem Soc 20:373–378. https://doi.org/10.1016/j.jscs.2012.08.002

    CAS  Article  Google Scholar 

  41. Napoleão DC, Zaidan LEMC, Salgado JBA et al (2015) Degradação do contaminante emergente paracetamol empregando processos oxidativos avançados. Gestão, Educ e Técnologia Ambient 19:725–734

    Google Scholar 

  42. Oliveira DFM, Batista PS, Muller PS, Velani V, França MD, Souza DR, Machado AEH (2012) Evaluating the effectivenes of photocatalysts based on titanium dioxide in the degradation of the dye Ponceau 4R. Dyes Pigments 92:563–572. https://doi.org/10.1016/j.dyepig.2011.06.007

    CAS  Article  Google Scholar 

  43. Pandey A, Sangeeta N, Parameswaran B, Larroche C (2015) Pretreatment of biomass: processes and technologies, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  44. Quesada HB, Baptista ATA, Cusioli LF, Seibert D, de Oliveira Bezerra C, Bergamasco R (2019) Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: a review. Chemosphere 222:766–780. https://doi.org/10.1016/j.chemosphere.2019.02.009

    CAS  Article  Google Scholar 

  45. Reddy DHK, Ramana DKV, Seshiaiah K, Reddy AVR (2011) Biosorption of Ni (II) from aqueous phase by Moringa oleífera bark, a low cost biosorbent. Desalination 268:150–157. https://doi.org/10.1016/j.desal.2010.10.011

    CAS  Article  Google Scholar 

  46. Sacco O, Vaiano V, Matarangolo M (2018) ZnO supported on zeolite pellets as efficient catalytic system for the removal of caffeine by adsorption and photocatalysis. Sep Purif Technol 193:303–310

    CAS  Article  Google Scholar 

  47. Sadik WA, Nashed AW, Abdel-Ghaffar MED (2007) Photodecolourization of ponceau 4R by heterogeneous photocatalysis. J Photochem Photobiol A Chem 189:135–140. https://doi.org/10.1016/j.jphotochem.2007.01.025

    CAS  Article  Google Scholar 

  48. Santacruz-Chaves JA, Oros-Ruiz S, Prado B, Zanella R (2015) Photocatalytic degradation of atrazine using TiO2 superficially modified with metallic nanoparticles. J Environ Chem Eng 3:3055–3061. https://doi.org/10.1016/j.jece.2015.04.025

    CAS  Article  Google Scholar 

  49. Santos OAA (1999) Hidrogenação seletiva do ácido oléico em catalisadores de rutênio. Universidade Estadual de Campinas, Campinas

    Google Scholar 

  50. Thommes M, Kaneko K, Neimark VA et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    CAS  Article  Google Scholar 

  51. Tian J, Chen L, Dai J, Wang X, Yin Y, Wu P (2009) Preparation and characterization of TiO2, ZnO, and TiO2/ZnO nanofilms via sol–gel process. Ceram Int 35:2261–2270. https://doi.org/10.1016/j.ceramint.2008.12.010

    CAS  Article  Google Scholar 

  52. Ullattil SG, Periyat P (2017) Sol-gel synthesis of titanium dioxide. Sol-Gel Mater Energy, Environ Electron Appl:271–283. https://doi.org/10.1007/978-3-319-50144-4_9

  53. Yang L, Yu LE, Ray MB (2008) Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis. Water Res 42:3480–3488. https://doi.org/10.1016/j.watres.2008.04.023

    CAS  Article  Google Scholar 

  54. Zhao X, Qi L (2012) Rapid microwave-assisted synthesis of hierarchical ZnO hollow spheres and their application in Cr(VI) removal. Nanotechnology 23:1–7. https://doi.org/10.1088/0957-4484/23/23/235604

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fernando Manzotti de Souza.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Suresh Pillai

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Castilhos, S., de Souza, F.M., Colpini, L.M.S. et al. Assessment comparison of commercial TiO2 and TiO2 sol-gel on the degradation of caffeine using artificial radiation. Environ Sci Pollut Res 27, 22155–22168 (2020). https://doi.org/10.1007/s11356-020-07748-x

Download citation

Keywords

  • Characterization
  • Photodegradation
  • Titanium dioxide
  • Caffeine
  • Sol-gel