Development of a molasses wastewater treatment system equipped with a biological desulfurization process

Abstract

In this study, a laboratory scale experiment for the treatment of synthetic molasses wastewater using a combination of an anaerobic baffled reactor (ABR) and a two-stage down-flow hanging sponge (TSDHS) reactor (ABR–TSDHS system) was conducted. The TSDHS comprised a closed-type first-stage down-flow hanging sponge (first DHS) for desulfurization and an open-type second-stage DHS (second DHS) for post-treatment of effluent from the ABR and first DHS. Effluent from the second DHS was sprinkled on top of the first DHS, whereas biogas produced from the ABR was supplied to its bottom. A chemical oxygen demand (COD) removal efficiency of 88.3% was found for the ABR–TSDHS system during the final treatment phase. The ABR achieved a maximum organic loading rate (OLR) of 3.70 kg COD/(m3 day). Most of the organic matter was degraded in the first compartment of the ABR, with methane-producing archaea as its main consumer. The biogas generated by the ABR contained high concentrations of hydrogen sulfide (up to 4,500 ppm). In the TSDHS, the first DHS achieved 87.3% hydrogen sulfide removal via dissolution into sprinkled effluent water. Dissolved sulfide in the first DHS effluent was oxidized to sulfate in the second DHS in the absence of aeration. In addition, 85.0% of the ammonia and 57.7% of the total nitrogen were removed in the second DHS via biological reactions, including sulfur-based autotrophic denitrification. Therefore, the ABR–TSDHS system can be applied to not only molasses wastewater treatment but also the desulfurization of the produced biogas.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Barber WP, Stuckey DC (1999) The use of the anaerobic baffled reactor (ABR) for wastewater treatment: a review. Water Res 33:1559–1578. https://doi.org/10.1016/S0043-1354(98)00371-6

    CAS  Article  Google Scholar 

  2. Cadillo-Quiroz H, Bräuer SL, Goodson N, Yavitt JB, Zinder SH (2014) Methanobacteriium paludis sp. nov. and novel strain Methanobacterium lacus isolated from northern peatlands. Int J Syst Evol Microbiol 64:1473–1480. https://doi.org/10.1099/ijs.0.059964-0

    CAS  Article  Google Scholar 

  3. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J., Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6: 1621–1624. https://doi.org/10.1038/ismej.2012.8

  4. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Meth 7: 335–336. https://doi.org/10.10382/Fnmeth.f.303

  5. Chen S, Liu X, Dong X (2005) Syntrophobacter sulfatireducens sp. nov., a novel syntrophic, propionate-oxidizing bacterium isolated from UASB reactors. Int J Syst Evol Microbial 55:1319–1324. https://doi.org/10.1099/ijs.0.63565-0

    CAS  Article  Google Scholar 

  6. Crespo C, Pozzo T, Karlsson EN, Alvarez MT, Mattiasson B (2012) Caloramator boliviensis sp. nov., a thermophilic, ethanol-producing bacterium isolated from a hot spring. Int J Syst Evol Microbiol 62:1679–1686. https://doi.org/10.1099/ijs.0.032664-0

    CAS  Article  Google Scholar 

  7. Farahani SS, Asoodar MA (2017) Life cycle environmental impacts of bioethanol production from sugarcane molasses in Iran. Environ Sci Pollut Res 24(28):22547–22556. https://doi.org/10.1007/s11356-017-9909-1

    CAS  Article  Google Scholar 

  8. Fernández M, Ramirez M, Peres MP, Gomez JM, Cantero D (2013) Hydrogen sulfide removal from biogas by an anoxic trickling filter packed with pall rings. Chem Eng J 225:456–463. https://doi.org/10.1016/j.cej.2013.04.020

  9. Fernández M, Ramirez M, Gomez JM, Cantero D (2014) Biogas desulfurization in an anoxic biotrickling filter packed with open-pore polyurethane foam. J Hazard Mater 264:529–535. https://doi.org/10.1016/j.jhazmat.2013.10.046

  10. Fortuny M, Baeza JA, Grmisans X, Gasas C, Lafuente J, Deshusses MA, Gabriel D (2008) Biological sweetening of energy gases mimics in biotrickling filters. Chemosphere 71:10–17. https://doi.org/10.1016/j.chemosphere.2007.10.072

    CAS  Article  Google Scholar 

  11. Fujihira T, Seo S, Yamaguchi T, Hatamoto M, Tanikawa D (2018) High-rate treatment system for solid/lipid-rich wastewater using anaerobic baffled reactor with scum recovery. Bioresour Technol 263:145–152. https://doi.org/10.1016/j.biortech.2018.04.091

    CAS  Article  Google Scholar 

  12. Harada H, Uemura S, Momonoi K (1994) Interaction between sulfate-reducing bacteria and methane-producing bacteria in UASB reactors fed with low strength wastes containing different level of sulfate. Water Res 28:355–367. https://doi.org/10.1016/0043-1354(94)90273-9

    CAS  Article  Google Scholar 

  13. He L, Zhong Y, Yao F, Chen F, Xie T, Wu B, Hou K, Wang D, Li X, Yang Q (2019) Biological perchlorate reduction: which electron donor we can choose? Environ Sci Pollut Res 26:16906–16922. https://doi.org/10.1007/s11356-019-05074-5

    CAS  Article  Google Scholar 

  14. Holmer M, Kristensen E (1994) Coexistence of sulfate reduction and methane production in an organic-rich sediment. Mar Ecol Prog Ser 107:177–184. https://doi.org/10.3354/meps107177

    CAS  Article  Google Scholar 

  15. Imachi H, Sekiguchi Y, Kamagata Y, Ohashi A, Harada H (2000) Cultivation and in situ detection of thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl Environ Microbiol 66:3608–3615. https://doi.org/10.1128/AEM.66.8.3608-3615.2000

    CAS  Article  Google Scholar 

  16. Imachi H, Sakai S, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y (2007) Pelotomaculum propionicicum sp. nov., an anaerobic, mesophilic, obligately syntrophic, propionate-oxidizing bacterium. Int J Syst Evol Microbiol 57:1487–1492. https://doi.org/10.1099/ijs.0.64925-0

    Article  Google Scholar 

  17. Jegatheesan V, Abdikheibari S, Marleni N, Phelan S, Park K, Bagshaw S, Rarago L, Shu L (2015) Estimating hydrogen sulfide dissipation rate constant under the influence of different chemical dosing. Int Biodeterior Biodegrad 101:47–55. https://doi.org/10.1016/j.ibiod.2015.03.026

    CAS  Article  Google Scholar 

  18. Jung MY, Park I-S, Kin W, Kim HL, Paek WK, Chang Y-Y (2010) Clostridium arbusti sp. nov., an anaerobic bacterium isolated from pear orchard soil. Int J Syst Evol Microbiol 60:2231–2235. https://doi.org/10.1099/ijs.0.013953-0

    CAS  Article  Google Scholar 

  19. Justo AJ, Jungeng L, Lili S, Haiman W, Lorivi MR, Mohammed MOA, Xiangtong Z, Yujie F (2016) Integrated expanded granular sludge bed and sequential batch reactor treating beet sugar industrial wastewater and recovering bioenergy. Environ Sci Pollut Res 23(20):21032–21040. https://doi.org/10.1007/s11356-016-7307-8

    CAS  Article  Google Scholar 

  20. Kuroda K, Chosei T, Nakahara N, Hatamoto M, Wakabayashi T, Kawai T, Araki N, Syutsubo K, Yamaguchi T (2015) High organic loading treatment for industrial molasses wastewater and microbial community shifts corresponding to system development. Bioresour Technol 196:225–234. https://doi.org/10.1016/j.biortech.2015.07.070

    CAS  Article  Google Scholar 

  21. Kwasny J, Balcerzak W (2016) Sorbents used for desulfurization in the adsorption process. Pol J Environ Stud 25(1):37–43. https://doi.org/10.15244/pjoes/60259

    CAS  Article  Google Scholar 

  22. Ma K, Liu X, Dong X (2006) Methanosaeta harudinacea sp. nov., a novel acetate-scavenging methanogen isolated from a UASB reactor. Int J Syst Evol Micobiol 56:127–131. https://doi.org/10.1099/ijs.0.63887-0

    CAS  Article  Google Scholar 

  23. Mischopoulou M, Naidis P, Kalamaras S, Kotsopoulos TA, Samaras P (2016) Effect of ultrasonic and ozonation pretreatment on methane production potential of raw molasses wastewater. Renew Energy 96:1078–1085. https://doi.org/10.1016/j.renene.2015.11.060

    CAS  Article  Google Scholar 

  24. Montebello AM, Fernandez M, Almenglo F, Ramirez M, Cantero D, Baeza M, Gabriel D (2012) Simultaneous methyl mercaptan and hydrogen sulfide removal in the desulfurization of biogas in aerobic and anoxic biotrickling filters. Chem Eng J 200–202:237–246. https://doi.org/10.1016/j.cej.2012.06.043

    CAS  Article  Google Scholar 

  25. Montebello AM, Bezerra T, Rovira R, Rago L, Lafuente J, Gamisans X, Campoy S, Baeza M, Gabriel D (2013) Operational aspects, pH transition and microbial shifts of a H2S desulfurizing biotrickling filter with random packing material. Chemosphere 93:2675–2682. https://doi.org/10.1016/j.chemosphere.2013.08.052

    CAS  Article  Google Scholar 

  26. Montebello AM, Mora M, Lopez LR, Bezerra T, Gamisans X, Lafuente J, Baeza M, Gabriel D (2014) Aerobic desulfurization of biogas by acidic biotrickling filtration in a randomly packed reactor. J Hazard Mater 280:200–208. https://doi.org/10.1016/j.jhazmat.2014.07.075

    CAS  Article  Google Scholar 

  27. Mountfort DO, Brulla WJ, Krumholz LR, Braynt MP (1984) Syntrophus buswellii gen. nov., sp. nov.: benzoate catabolizer from methanogenic ecosystems. Int J Syst Bacteriol 34:216–217. https://doi.org/10.1099/00207713-34-2-216

    Article  Google Scholar 

  28. Nachiyasit S, Stuckey DC (1997) The effect of shock loads on the performance of an anaerobic baffled reactor (ABR). 1. Step changes in feed concentration at constant retention time. Water Res 31(11):2737–2746. https://doi.org/10.1016/S0043-1354(97)00133-4

    Article  Google Scholar 

  29. Onodera T, Sase S, Choeisa P, Yoochatchaval W, Sumino H, Yamaguchi T, Ebie Y, Xu K, Tomioka N, Mizouchi M, Syutsubo K (2012) Evaluation of process performance and sludge properties of an up-flow staged sludge blanket (USSB) reactor for treatment of molasses wastewater. Int J Environ Res 6(4):1015–1024

    CAS  Google Scholar 

  30. Onodera T, Sase S, Choeisa P, Yoochatchaval W, Sumino H, Yamaguchi T, Ebie Y, Xu K, Tomioka N, Mizouchi M, Syutsubo K (2013) Development of a treatment system for molasses wastewater: The effect of cation inhibition on the anaerobic degradation process. Bioresour Technol 131:295–302. https://doi.org/10.1016/j.biortech.2012.12.126

    CAS  Article  Google Scholar 

  31. Papong S, Rewlay-Ngoen C, Itsubo N, Malakul P (2017) Environmental life cycle assessment and social impacts of bioethanol production in Thailand. J Clean Prod 157:254–266. https://doi.org/10.1016/j.jclepro.2017.04.122

    Article  Google Scholar 

  32. Pecheritsyna SA, Rivkina EM, Akimov VN, Shcherbakova VA (2012) Desulfovibrio arcticus sp. nov., a psychrotolerant sulfate-reducing bacterium from cryopeg. Int J Syst Evol Microbiol 62:33–37. https://doi.org/10.1099/ijs.0.021451-0

    CAS  Article  Google Scholar 

  33. Pirsaheb M, Rostamifar M, Mansouri AM, Zinatizadeh AAL, Sharafi K (2015) Performance of an anaerobic baffled reactor (ABR) treating high strength baker’s yeast manufacturing wastewater. J Taiwan Inst Chem Eng 47:137–148. https://doi.org/10.1016/j.jtice.2014.09.029

    CAS  Article  Google Scholar 

  34. Ren N, Xing D, Rittmann BE, Zhao L, Xie T, Zhao X (2007) Microbial community structure of ethanol type fermentation in bio-hydrogen production. Environ Microbiol 9:1112–1125. https://doi.org/10.1111/j.1462-2920.2006.01234.x

    CAS  Article  Google Scholar 

  35. Rezvani F, Sarrafzadeh M-H (2019) Nitrate removal from drinking water with a focus on biological methods: a review. Environ Sci Pollut Res 26:1124–1141. https://doi.org/10.1007/s11356-017-9185-0

    CAS  Article  Google Scholar 

  36. Sakai S, Ehara M, Tseng I-C, Yamaguchi T, Bräuer SL, Cadillo-Quiroz H, Zinder SH, Imachi H (2012) Methanolinea mesophila sp. nov., a hydrogenotrophic methangen isolated from rice field soil, and proposal of archaeal family Methanoregulaceae fam. nov. within the order Methanomicrobiales. Int J Syst Evol Microbial 62:1389–1395. https://doi.org/10.1099/ijs.0.035048-0

    CAS  Article  Google Scholar 

  37. Satyawali Y, Balakrishnan M (2008) Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: A review. J Environ Manag 86:481–497. https://doi.org/10.1016/j.jenvman.2006.12.024

    CAS  Article  Google Scholar 

  38. Sipma J, Lens P, Vieira A, Miron Y, Can Lier JB, Hulshoff Pol LW, Lettinga G (1999) Thermophilic sulphate reduction in upflow anaerobic sludge bed reactors under acidifying conditions. Process Biochem 35(5):509–522. https://doi.org/10.1016/S0032-9592(99)00096-5

    Article  Google Scholar 

  39. Sonaka H, Syutsubo K, Fukuda M, Yamaguchi T, Tanikawa D (2016) Ammonia stripping from high ammonia-containing wastewater by downflow hanging sponge (DHS) reactor. J Water Environ Technol 14(5):303–307. https://doi.org/10.2965/jwet.15-060

    Article  Google Scholar 

  40. Tandukar M, Ohashi A, Harada H (2007) Performance comparison of a pilot-scale UASB and DHS system and activated sludge process for the treatment of municipal wastewater. Water Res 41(12):2697–2705. https://doi.org/10.1016/j.watres.2007.02.027

    CAS  Article  Google Scholar 

  41. Tang K, Baskaran V, Nemati M (2009) Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem Eng J 44:73–94. https://doi.org/10.1016/j.bej.2008.12.011

    CAS  Article  Google Scholar 

  42. Tanikawa D, Fujise R, Kondo Y, Fujihira T, Seo S (2018) Elimination of hydrogen sulfide from biogas by a two-stage trickling filter system using effluent from anaerobic-aerobic wastewater treatment. Int Biodeterior Biodegrad 130:98–101. https://doi.org/10.1016/j.ibiod.2018.04.007

    CAS  Article  Google Scholar 

  43. Tilahun E, Sahinkaya E, Çalli B (2018) A hybrid membrane gas absorption and bio-oxidation process for the removal of hydrogen sulfide from biogas. Int Biodterior Biodegrad 127:69–76. https://doi.org/10.1016/j.ibiod.2017.11.015

    CAS  Article  Google Scholar 

  44. Tolieng V, Prasirtsak B, Miyashita M, Shibata C, Tanaka N, Thongchul N, Tanasupawat S (2017) Sporolactobacillus shoreicorticis sp. nov., a lactic acid-producing bacterium isolated from tree bark. Int Syst Evol Microbiol 67:2363–2369. https://doi.org/10.1099/ijsem.0.001959

    CAS  Article  Google Scholar 

  45. Ueki A, Akasaka H, Suzuki D, Ueki K (2006) Paludibacter propionicigenes gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. Int J Syst Evol Microbiol 56:39–44. https://doi.org/10.1099/ijs.0.63896-0

    CAS  Article  Google Scholar 

  46. Uemura S, Suzuki S, Abe K, Kubota K, Yamaguchi T, Ohashi A, Takemura Y, Harada H (2010) Removal of organic substances and oxidation of ammonium nitrogen by a down-flow hanging sponge (DHS) reactor under high salinity conditions. Bioresour Technol 101(14):5180–5185. https://doi.org/10.1016/j.biortech.2010.02.040

    CAS  Article  Google Scholar 

  47. Watari T, Tanikawa D, Kuroda K, Nakamura A, Fujii N, Yoneyama F, Wakisaka O, Hatamoto M, Yamaguchi T (2015) Development of UASB-DHS system for treating industrial wastewater containing ethylene glycol. J Water Environ Technol 13(2):131–140. https://doi.org/10.2965/jwet.2015.131

    Article  Google Scholar 

  48. Wu C, Liu X, Dong X (2006) Syntrophomonas cellicola sp. nov., a spore-forming syntrophic bacterium isolated from a distilled-spirit-fermenting cellar, and assignment of Syntrophospora bryantii to Syntrophomonas bryantii comb. nov. Int J Syst Evol Microbiol 56:2331–2335. https://doi.org/10.1099/ijs.0.64377-0

    CAS  Article  Google Scholar 

  49. Xing D, Ren N, Li Q, Lin M, Wang A, Zhao L (2006) Ethanoligenens harbinense gen. nov., sp. nov., isolated from molasses wastewater. Int J Syst Evol Microbiol 56:755–760. https://doi.org/10.1099/ijs.0.63926-0

    CAS  Article  Google Scholar 

  50. Yamaguchi T, Nakamura S, Hatamoto M, Tamura E, Tanikawa D, Kawakami S, Nakamura A, Kato K, Nagano A, Yamaguchi T (2018) A novel approach for toluene gas treatment using a downflow hanging sponge reactor. Appl Microbiol Biotechnol 102(13):5625–5634. https://doi.org/10.1007/s00253-018-8933-5

    CAS  Article  Google Scholar 

  51. Yuan J, Du L, Li S, Yang F, Zhang Z, Li G, Wang G (2019) Use of mature compost as filter media and the effect of packing depth on hydrogen sulfide removal from composting exhaust gases by biofiltration. Environ Sci Pollut Res 26:3762–3770. https://doi.org/10.1007/s11356-018-3795-z

    CAS  Article  Google Scholar 

  52. Yun J, Cho K-S (2016) Effects of organic loading rate on hydrogen and volatile fatty acid production and microbial community during acidogenic hydrogenesis in a continuous stirred tank reactor using molasses wastewater. J Appl Microbiol 121:1627–1636. https://doi.org/10.1111/jam.13316

    CAS  Article  Google Scholar 

  53. Zeng Y, Luo Y, Huan C, Shuai Y, Liu Y, Xu L, Ji G, Yan Z (2019) J Clean Prod 224:88–99. https://doi.org/10.1016/j.jclepro.2019.03.218

    CAS  Article  Google Scholar 

  54. Zhu Y, An D, Hou Li-An Liu M, Yu S (2016) Treatment of decentralized molasses wastewater using anaerobic baffled reactor. Desalin Wat Treat 57(50):23597–23602. https://doi.org/10.1080/19443994.2016.1138332

    CAS  Article  Google Scholar 

  55. Zivkovic S, Veljkovic M (2018) Environmental impacts the of production and use of biodiesel. Environ Sci Pollut Res 25(1):191–199. https://doi.org/10.1007/s11356-017-0649-z

    Article  Google Scholar 

Download references

Acknowledgment

This research was carried out by Japan Society for Promotion of Science, KAKENHI (Grant number: 16 K18176).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daisuke Tanikawa.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Ta Yeong Wu

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tanikawa, D., Seo, S. & Motokawa, D. Development of a molasses wastewater treatment system equipped with a biological desulfurization process. Environ Sci Pollut Res 27, 24738–24748 (2020). https://doi.org/10.1007/s11356-019-07077-8

Download citation

Keywords

  • Molasses industry
  • Anaerobic baffled reactor
  • Two-stage down-flow hanging sponge
  • Desulfurization
  • Sulfur-based autotrophic denitrification