Skip to main content
Log in

Adsorptive desulfurization of dibenzothiophene (DBT) in model petroleum distillate using functionalized carbon nanotubes

  • Green Approaches for Materials, Wastes and Effluents Treatment
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Industrial hydrodesulfurization method has not been efficient for removal of dibenzothiophene (DBT) from petroleum distillates. Therefore, in this current study, adsorptive desulfurization (investigated in batch mode) was carried out using functionalized carbon nanotubes (FCNTs) to reduce the amount of DBT in a model diesel. Different techniques, such as, scanning electron microscope (SEM) equipped with energy-dispersive X-ray (EDX), were used to check the morphological structure and the elemental compositions of the adsorbent; Fourier transmission infrared (FTIR) was used to check the chemical functionalities of the adsorbent; and nitrogen physisorption at 77 K was used to check the surface area, pore size, and pore volume of the adsorbent. The results show that the FCNTs outperformed the non-functionalized carbon nanotubes (CNTs) during the desulfurization by about 10%, indicating the functionalization did improve the desulfurization performance of the CNTs. The % removal of DBT by the FCNTs and CNTs was 70.48 and 60.88%, respectively. It can be concluded that the acid treatment of CNTs enhanced its surface affinity for DBT, thus contributing to the improved adsorption performance of the adsorbent. The isotherm results show that Freundlich isotherm model described well the mechanism of the adsorption process for both CNTs and FCNTs. In addition, pseudo second-order kinetics describes the behavior of the adsorbents during the adsorption process. The results obtained in this study therefore show that functionalized CNTs could be efficient and potential adsorbent for removal of DBT in petroleum distillate (e.g., diesel), to meet up with the stringent policies regarding emission of sulfur oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmad W, Ahmad I, Ishaq M, Ihsan K (2017) Adsorptive desulfurization of kerosene and diesel oil by Zn impregnated montmorollonite clay. Arab J Chem 10(2):S3263–S3269

    Article  CAS  Google Scholar 

  • Ahmed K, Ahmaruzzaman M (2015) Adsorptive desulfurization of feed diesel using chemically impregnated coconut coir waste Md. J Int J Environ Sci Technol 12:2847–2856

    Article  CAS  Google Scholar 

  • Al-Ghouti MA, Al-Degs YS, Issa AA, Al Bakain RZ, Khraisheh MA (2017) Mechanistic and adsorption equilibrium studies of dibenzothiophene-rich-diesel on MnO2-loaded activated carbon: surface characterization. Environ Prog Sustain Energy 00(00). 36(3):903–913. https://doi.org/10.1002/ep.12539

    Article  CAS  Google Scholar 

  • Al-Zubaidy IAH, Tarsh FB, Darwish NN, Abdul Majeed BSS, Al Sharafi A, Chacra LA (2013) Adsorption process of sulfur removal from diesel oil using sorbent materials. J Clean Energy Technol 1(1):66–68

    Article  CAS  Google Scholar 

  • Chen H, Zhou X, Shang H, Liu C, Qiu J, Wei F (2004) Adsorption properties of dibenzothiophene (DBT) on a CNT (carbon nanotube) support as well as on CoMoS/CNT and CoMoO/CNT catalysts. J Nat Gas 13(4):209–217

    CAS  Google Scholar 

  • Daware GB, Kulkarni AB, Rajput AA (2015) Desulphurization of diesel by using low cost adsorbent. Int J Innov Emerg Res Eng 2(6):69–73

    Google Scholar 

  • Deborah M, Jawahar A, Mathavan T, Dhas KM, Benial AMF (2015) Preparation and characterization of oxidized multi-walled carbon nanotube and glycine functionalized multi-walled carbon nanotubes. Fullerenes Nanotubes Carbon Nanostruct 23(7):583–590

    Article  CAS  Google Scholar 

  • Eddebbagh M, Abourriche A, Berrada M, Zina MB, Bennamara A (2016) Adsorbent material from pomegranate (Punica granatum) leaves: optimization on removal of methylene blue using response surface methodology. J Mater Environ Sci 7(6):2021–2033

    CAS  Google Scholar 

  • Fallah RN, Azizian S (2012) Removal of thiophenic compounds from liquid fuel by different modified carbon cloths. Fuel Processing Technology 93:45–52

    Article  CAS  Google Scholar 

  • Fayazi M, Taher MA, Afzali D, Mostafavi A (2015) Removal of dibenzothiophene using activated carbon/γ-Fe CO nano-composite: Kinetic and themodynamic investigation of the removal process. Anal Bional Chem Res 2(2):73–84

  • Fei L, Rui J, Wang R, Lu Y, Yang X (2017) Equilibrium and kinetic studies on the adsorption of thiophene and dibenzothiophene onto NiCeY zeolite. RSC Adv 37. https://doi.org/10.1039/c7r00415j

  • Gawande PR, Kaware JP (2018) Isotherm and kinetics of desulphurization of diesel by batch adsorption studies. Int J Chem Eng Res 10(1):1–16

    Google Scholar 

  • Gong J, Wang B, Zeng G, Yang C, Niu C, Niu Q, Zhou W, Liang Y (2009) Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater 164:1517–1522

    Article  CAS  Google Scholar 

  • Guadarrama-Fernández L, Manzo-Robledo A, Calderon-Dominguez G, Martinez-Rivas A, Ortiz-Lopez J, Vargas-Garcia R (2014) Characterization of functionalized multiwalled carbon nanotubes for use in an enzymatic sensor. Microsc Microanal 20:1479–1485. https://doi.org/10.1017/5143192761401304X

    Article  Google Scholar 

  • Hernández-Maldonado AJ, Yang RT (2004) New sorbents for desulfurization of diesel fuels via ∏-complexation. AICHE J 50(4):791–801

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  • Ishaq M, Sultan S, Ahmad I, Ullah H, Yaseen M, Amir A (2017) Adsorptive desulfurization of model oil using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent. J Saudi Chem Soc 21(2):143–151

    Article  CAS  Google Scholar 

  • Jiang Z, Liu Y, Sun X, Tian F, Sun F, Liang C, You W, Han C, Li C (2003) Activated carbons chemically modified by concentrated H2SO4 for the adsorption of the pollutants from wastewater and the dibenzothiophene from fuel oils. Langmuir 19:731–736

    Article  CAS  Google Scholar 

  • Khaled M (2015) Adsorption performance of multiwall carbon nanotubes and graphene oxide for removal of thiophene and dibenzothiophene in model diesel fuel. Res Chem Intermed 41:9817–9833. https://doi.org/10.1007/s11164-015-1986-5

    Article  CAS  Google Scholar 

  • Kumar M, Tamilarasan R (2017) Kinetics, equilibrium data and modeling studies for the sorption of chromium by Prosopis juliflora bark carbon. Arab J Chem 10:S1567–S1577

    Article  CAS  Google Scholar 

  • Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Kung. Svenska. Veten. Akad. Handl, 24:1–39

  • Landi BJ, Cress CD, Evans CM, Raffaelle RP (2005) Thermal oxidation profiling of single-walled carbon nanotubes. Chem Matter 17:6819–6834

    Article  CAS  Google Scholar 

  • Le VT, Ngo CL, Le QT, Ngo TT, Nguyen DN, Vu MT (2013) Surface modification and functionalization of carbon nanotube with some organic compounds. Adv Nat Sci Nanosci Nanotechnol 4:035017. https://doi.org/10.1088/2043-6262/4/3/035017

    Article  CAS  Google Scholar 

  • Liu Y, Liu X, Dong W, Zhang L, Kong Q, Wang W (2017) Efficient adsorption of sulfamethazine onto modified activated carbon: a plausible adsorption mechanism. Sci Rep 7:12437–12449. https://doi.org/10.1038/s41598-017-12805-6

    Article  CAS  Google Scholar 

  • Mlanga SD, Mondal KC, Carter R, Witcomb MJ Coville NJ (2009) The effect of synthesis parameter on the catalytic synthesis of multiwalled carbon nanotubes using Co/CaCO Catalysts. S Afr J Chem 62:67–76

  • Misra A, Tyagi PK, Rai P, Misra DS (2007) FTIR spectroscopy of multi-walled carbon nanotubes: a simple approach to study the nitrogen doping. J Nanosci Nanotechnol 7:1820–1823

    Article  CAS  Google Scholar 

  • Moosavi ES, Dastgheib SA, Karimzadeh R (2012) Adsorption of thiophenic compounds from model diesel fuel using copper and nickel impregnated activated carbons. Energies:4233–4250

  • Nazal MK, Khaled M, Atieh MA, Aljundi IH, Oweimreen GA, Abulkibash AM (2015) The nature and kinetics of the adsorption of dibenzothiophene in model diesel fuel on carbonaceous materials loaded with aluminum oxide particles. Arab J Chem. https://doi.org/10.1016/j.arabjc.2015.12.003

  • Ngoy JM, Iyuke SE, Neose WE, Yah CS (2011) Covalent functionalization for multiwalled carbon nanotubes-folic and bound conjugate. J Appl Sci 11(15):2700–2711

    Article  CAS  Google Scholar 

  • Sadare OO, Obazu F, Daramola MO (2017) Biodesulfurization of petroleum distillates—current status, opportunities and future challenges. Environments 4(4):85–104

    Article  Google Scholar 

  • Sahebian S, Zebarjad SM, Khaki JV, Lazzeri A (2015) A study on the dependence of structure of multi-walled carbon nanotubes on acid treatment. J Nanostruct Chem 5(3):287–293

    Article  CAS  Google Scholar 

  • Saini S, Kumar R, Chawla J, Kaur I (2017) Punica granatum (pomegranate) carpellary membrane and its modified form used as adsorbent for removal of Carmium(II) ions from aqueous solutions. https://doi.org/10.2166/aqua.2017.026

    Article  Google Scholar 

  • Saleh TA, Siddiqui MN, Al-Arfaj AA (2014) Synthesis of multiwalled carbon nanotubes—titania nanomaterial for desulfurization of model fuel. J Nanomater 940639:1–66

    Article  CAS  Google Scholar 

  • Seredych M, Wu CT, Brender P, Ania CO, Vix-Guterl C, Bandosz TJ (2012) Role of phosphorus in carbon matrix in desulphurization of diesel fuel using adsorption process. Fuel 92:318–326

    Article  CAS  Google Scholar 

  • Silva WM, Ribeiro H, Seara LM, Calado HDR, Ferlauto AS, Paniago RM, Leite CF, Silva GG (2012) Surface properties of oxidized and aminated multi-walled carbon nanotubes. J Braz Chem Soc 5(6):1078–1086

    Article  Google Scholar 

  • Tetana ZN, Mhlanga SD, Bepete G, Krause RWM, Coville NJ (2012) The synthesis of nitrogen-doped multiwalled carbon nanotubes using an Fe-Co/CaCO3 catalyst. S Afr J Chem 65:39–49

    CAS  Google Scholar 

  • Vadivelan V, Kumar KV (2005) Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J Colloid Interface Sci 286:90–100

    Article  CAS  Google Scholar 

  • Wang J, Wei J (2017) Selective and simultaneous removal of dibenzothiophene and 4-methyldibenzothiophene using double-template molecularly imprinted polymers on the surface of magnetic mesoporous silica. J Mater Chem A 5:4651–4659

    Article  CAS  Google Scholar 

  • Xiao J, Li Z, Liu B, Xia Q, Yu M (2008) Adsorption of benzothiophene and dibenzothiophene on ion-impregnated activated carbons and ion-exchanged Y zeolites. Energy Fuel 22:3858–3863

    Article  CAS  Google Scholar 

  • Zhou A, Ma X, Song C (2009) Effects of oxidative modification of carbon surface on the adsorption of sulfur compounds in diesel fuel. Appl Catal B Environ 87:190–199

    Article  CAS  Google Scholar 

Download references

Acknowledgments

OOS acknowledges the financial support provided by L’Oréal–UNESCO Foundation for Women in Science, Sub-Saharan African Fellowship, for her PhD degree program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Olawale Daramola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadare, O.O., Daramola, M.O. Adsorptive desulfurization of dibenzothiophene (DBT) in model petroleum distillate using functionalized carbon nanotubes. Environ Sci Pollut Res 26, 32746–32758 (2019). https://doi.org/10.1007/s11356-019-05953-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05953-x

Keywords

Navigation