Skip to main content

Advertisement

Log in

Low digestibility of phytate phosphorus, their impacts on the environment, and phytase opportunity in the poultry industry

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phosphorus is an essential macro-mineral nutrient for poultry, needed for the body growth, development of bones, genomic function, good quality flesh, and eggs production. The imbalance of organic phosphorus sources in the diet mostly affect the phosphorus digestibility, reduces the poultry performance and health, and increases the environmental pollution burden. A study was reviewed to estimate the low phytate phosphorus digestibility of ingredients in poultry diet and their impacts on environmental ecosystem and opportunity of phytase supplementation. Plant ingredients mostly used in poultry diets are rich in phytate phosphorus. The phytate phosphorus digestibility and utilization is low in the gut of birds which leads to decrease other nutrients digestibility and increase excessive excretion of phosphorus with additional nutrients in the manure. When that manure applied to the lands containing excessive residual phosphorus and additional nutrients which pollute soil, groundwater disturbed the entire ecosystem. This issue is developed by poultry due to lack of digestive enzyme phytase which promotes the phytate phosphorus during digestion and reduces the excessive losses of phosphorus in excreta. To overcome this matter, the addition of mostly exogenous phospho-hydrolytic phytase enzymes in the diet, i.e. Escherichia coli, Peniophora lycii, Aspergillus niger, and Ficum, are the possible ways to increase the digestibility and utilization of phytate phosphorus and promote the stepwise release of phosphorus from phytate and significantly decrease phosphorus excretion. The aim of this review is to highlight the role of phytase supplementation in the poultry feeding, improvement of phytate phosphorus digestibility with performance, and reduction of phosphorus pollution from the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbasi F, Jingbo L, Hongfu Z, Xiaoyun S, Xuegang L (2018a) Effects of dietary total phosphorus concentration and casein supplementation on the determination of true phosphorus digestibility for broiler chickens. Ital J Anim Sci 17(1):135–144

    Article  CAS  Google Scholar 

  • Abbasi F, Jingbo L, Hongfu Z, Xiaoyun S, Xuegang L (2018b) Effects of feeding corn naturally contaminated with aflatoxin on growth performance, apparent ileal digestibility, serum hormones levels and gene expression of Na+, K+-ATPase in ducklings. Asia Aust J Anim Sci 31(1):91–97

    Article  CAS  Google Scholar 

  • Abbasi IHR, Sahito HA, Abbasi F, Menghwar DR, Kaka NA, Sanjrani MI (2014) Impact of different crude protein levels on growth of lambs under intensive management system. Int J Adv Res 2:227–235

    Google Scholar 

  • Adedokun S, Owusu AAA, Ragland D, Plumstead P, Adeola O (2015) The efficacy of a new 6-phytase obtained from Buttiauxella spp. Expressed in Trichoderma reesei on digestibility of amino acids, energy, and nutrients in pigs fed a diet based on corn, soybean meal, wheat middlings, and corn distillers’ dried grains with solubles. J Anim Sci 93(1):168–175

    Article  CAS  Google Scholar 

  • Adeola O, Cowieson AJ (2011) Opportunities and challenges in using exogenous enzymes to improve non-ruminant animal production. J Anim Sci 89:3189–3218

    Article  CAS  Google Scholar 

  • Afsharmanesh M, Scott TA, Silversides FG (2008) Effect of wheat type, grinding, heat treatment, and phytase supplementation on growth efficiency and nutrient utilization of wheat-based diets for broilers. Can J Anim Sci 88:57–64

    Article  CAS  Google Scholar 

  • Anderson DM, Gilbert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition and consequences. Estuaries Coast 25:704–726

    Article  Google Scholar 

  • Aneja VP, Schlessinger WH, Niyogi D, Jennings G, Gilliam W, Nighton RE, Duke CS, Blunden J, Krishnan S (2006) Emerging national research needs for agricultural air quality. EOS Trans Am Geophys Union 87:25–36

    Article  Google Scholar 

  • Angel R, Saylor WW, Mitchell AD, Powers W, Applegate TJ (2006) Effect of dietary phosphorus, phytase, and 25-hydroxycholecalciferol on broiler chicken bone mineralization, litter phosphorus, and processing yields. J Poult Sci 85:1200–1211

    Article  CAS  Google Scholar 

  • Angel R, Saylor WW, Dhandu AS, Powers W, Applegate TJ (2005) Effects of dietary phosphorus, phytase, and 25-hydroxycholecalciferol on performance of broiler chickens grown in floor pens. Poult Sci 84:1031–1044

    Article  CAS  Google Scholar 

  • Angel R, Tamim NM, Applegate TJ, Dhandu AS, Ellestad LE (2002) Phytic acid chemistry: influence of phytin phosphorus availability and phytase efficacy. J Appl Poult Res 11:471–480

    Article  CAS  Google Scholar 

  • Applegate T, Ange JR, Classen HL (2003) Effect of dietary calcium, 25-hydroxycholecalciferol, and bird strain on small intestinal phytase activity in broiler chickens. Poult Sci 82:1140–1148

    Article  CAS  Google Scholar 

  • Applegate TJ, Angel CR, Classen HL, Newkirk RW, Maenz DD (2000) Effect of dietary calcium concentration and 25-hydroxycholecalceferol on phytate hydrolysis and intestinal phytase activity in broilers. Poult Sci 79(Suppl. 1):21 (Abstr.)

    Google Scholar 

  • Augspurger NR, Baker DH (2004) High dietary phytase levels maximize phytate-phosphorus utilization but do not affect protein utilization in chicks fed phosphorus- or amino acid-deficient diets. J Anim Sci 82:1100–1107

    Article  CAS  Google Scholar 

  • Ballam GC, Nelson TS, Kirby LK (1985) Effect of different levels of calcium and phosphorus on phytate hydrolysis by chicks. Nutr Reports Int 32:909–913

    CAS  Google Scholar 

  • Blaabjerg K, Carlsson NG, Hansen MJ, Poulsen HD (2010) Effect of heat-treatment, phytase, xylanase and soaking time on inositol phosphate degradation in vitro in wheat, soybean meal and rapeseed cake. Anim Feed Sci Technol 162:123–134

    Article  CAS  Google Scholar 

  • Boros D, Marquardt RR, Guenter W, Brufau J (2002) Chick adaptation to diets based on milling fractions of rye varying in arabinoxylans content. Anim Feed Sci Technol 101:135–149

    Article  CAS  Google Scholar 

  • Brejnholt SM, Dionisio G, Glitsoe V, Skov LK, Brinch PH (2011) The degradation of phytate by microbial and wheat phytases is dependent on the phytate matrix and the phytase origin. J Sci Food Agric 91:1398–1405

    Article  CAS  Google Scholar 

  • Burkholder JA, Glasgow HB (1997) Pfiesteria piscicidia and other Pfiesteria-dinoflagellates behaviors, impacts, and environmental controls. Limnol Oceanogr 42:1052–1075

    Article  Google Scholar 

  • Butani JB, Parnerkar S (2015) Role of microbial phytase in broiler nutrition-a review. J Livestock Sci 6:113–118

    Google Scholar 

  • Camden BJ, Morel PCH, Thomas DV, Ravindran V, Bedford MR (2001) Effectiveness of exogenous microbial phytase in improving the bioavailabilities of phosphorus and other nutrients in maize-soya-bean meal diets for broilers. J Anim Sci 73:289–297

    Article  CAS  Google Scholar 

  • Carre B, Idi A, Maisonnier S, Melcion JP, Oury FX, Gomez J, Pluchard P (2002) Relationship between digestibilities off ood components and characteristics of wheats (Triticum aestivum) introduced as the only cereal source in broiler chicken diet. Br Poult Sci 43:404–415

    Article  CAS  Google Scholar 

  • Celi L, Barberis E (2005) Abiotic stabilization of organic phosphorus in the environment. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CABI Publishing, Wallingford

    Google Scholar 

  • Chan KY, VanZwieten L, Meszaros L, Downie A, Joseph S (2008) Using poultry litter biochars as soil amendments. Aust J Soil Res 46:437–444

    Article  Google Scholar 

  • Chung TK, Rutherfurd SM, Thomas DV, Moughan PJ (2013) Effect of two microbial phytases on mineral availability and retention and bone mineral density in low-phosphorus diets for broilers. Br Poult Sci 54(3):362–373

    CAS  Google Scholar 

  • Conte JA, Teixeira AS, Fialho ET (2003) Efeito da fitase e xilanasesobre o desempenho e as característicasósseas de frangos de cortealimentados com diet as contendofarelo de arroz. Rev Bras Zootec 32(5):1147–1156

    Article  Google Scholar 

  • Cromwell GL, Coffey RD (1991) Phosphorus - a key essential nutrient, yet a possible major polluant - its central role in animal nutrition. In: Alltech’s Annual Symposium of Biotechnology in the Feed Industry, 7. Nicholasville. Proceedings Nicholasville: Alltech Technical Publications 133-145

  • Dankowiakowska A, Kozlowska I, Bednarczyk M (2013) Probiotics, prebiotics and snybiotics in poultry-mode of action, limitation and achievements. J Cent Eur Agric 14:467–478

    Article  Google Scholar 

  • Dozier W, Perryman K, Hess J (2015) Apparent ileal amino acid digestibility of reduced-oil distillers dried grains with soluble fed to broilers from 23 to 31 days of age. J Poult Sci 94:379–383

    Article  CAS  Google Scholar 

  • Eckhout W, DePaepe M (1994) Total phosphorus, phytate phosphorus and phytase activity in plant feedstuffs. Anim Feed Sci Technol 47:19–29

    Article  Google Scholar 

  • Emiola A, Woyengo TA, Owusu-Asiedu A, Guenter W, Simmins H, Nyachoti CM (2007) Performance and nutrient utilization in broilers fed corn-soybean meal-based diets supplemented with thermo-tolerant phytase. Poult Sci 86(Suppl.1):962 (Abstr.)

    Google Scholar 

  • FAO (2006) Food and agriculture organization of the United Nations. World agriculture: towards 2030/2050 interim report. FAOSTAT, Rome

  • Garrett JB, Kretz KA, ODonoghue E, Kerovuo J, Kim W, Barton NR, Hazlewood GP, Short JM, Robertson DE, Gray KA (2004) Enhancing the thermal tolerance and gastric performance of a microbial phytase for use as a phosphate-mobilizing monogastric-feed supplement. Appl Environ Microbiol 70:3041–3046

    Article  CAS  Google Scholar 

  • Greiner R, Haller E, Konietzny U, Jany KD (1997) Purification and characterization of a phytase from Klebsiellaterrigenda. Arch Biochem Biophys 341:201–206

    Article  CAS  Google Scholar 

  • Hansen D, Nelson J, Binford G, Sims T, Saylor B (2005) Phosphorus in poultry litter: new guidelines from the University of Delaware. College of Agriculture and Natural Resources. University of Delaware, Newark

    Google Scholar 

  • Haraldsson AK, Rimsten L, Alminger ML, Andersson R, Andlid T, Aman P, Sandberg AS (2004) Phytate content is reduced and b-glucanase activity suppressed in malted barley steeped with lactic acid at high temperature. J Sci Food Agric 84:653–662

    Article  CAS  Google Scholar 

  • Harland FB, Morris ER (1995) Phytin: a good or a bad food component. Nutr Res 15:733–754

    Article  CAS  Google Scholar 

  • Harmel RD, Smith DR, Haney RL, Dozier M (2009) Nitrogen and phosphorus runoff from cropland and pasture fields fertilized with poultry litter. J Soil Water Conserv 64:400–412

    Article  Google Scholar 

  • Howarth RW (2008) Coastal nitrogen pollution: a review of sources and trends globally and regionally. Harmful Algae 8:14–20

    Article  CAS  Google Scholar 

  • Howarth RW, Anderson DA, Church TM, Greening H, Hopkinson CS, Huber W, Marcus N, Naiman RJ, Segerson K, Sharpley AN, Wiseman WJ (2000) Clean coastal waters: understanding and reducing the effects of nutrient pollution. National Academy Press, National Research Council, Washington, DC

    Google Scholar 

  • Jacela JY, DeRouchey JM, Tokach MD, Goodband RD, Nelssen JL, Renter DG, Dritz SS (2010) Feed additives for swine: fact sheets-prebiotics and probiotics and phytogenics. J Swine Health Prod 18:87–91

    Google Scholar 

  • Jendza JA, Dilger RN, Sands JS, Adeola O (2006) Efficacy and equivalency of an Escherichia coli-derived phytase for replacing inorganic phosphorus in the diets of broiler chickens and young pigs. J Anim Sci 84:3364–3374

    Article  CAS  Google Scholar 

  • Jeppeson E, Sondergaard M, Sondergaard M, Christofferson K (1998) The structuring role of submerged macrophytes in lakes. Springer, Berlin

    Book  Google Scholar 

  • Jongbloed AW, Kemme PA (1990) Effect of pelleting mixed feeds on phytase activity and the apparent absorbability of phosphorus and calcium in pigs. Anim Feed Sci Technol 28:233–242

    Article  Google Scholar 

  • Kaiser DE, Mallarino AP, Haq MU (2009) Runoff phosphorus loss immediately after poultry manure application as influenced by the application rate and tillage. J Environ Qual 38:299–308

    Article  CAS  Google Scholar 

  • Kebreab E, Hansen AV, Strathe AB (2012) Animal production for efficient phosphate utilization: from optimized feed to high efficiency livestock. Curr Opin Biotechnol 23:872–877

    Article  CAS  Google Scholar 

  • Kelleher BP, Leahy JJ, Henihan AM, Odwyer TF, Sutton D, Leahy MJ (2002) Advances in poultry litter disposal technology – a review. Bioresour Technol 83:27–36

    Article  CAS  Google Scholar 

  • Kemme PA, Schlemmer U, Mroz Z, Jongbloed AW (2006) Monitoring the effect of microbial phytase on ileal phosphorus and amino acid Environ. Qual 34:1896–1909

    Google Scholar 

  • Kerr MJ, Classen HL, Newkirk RW (2000) The effects of gastrointestinal tract micro-flora and dietary phytase on inositol hexaphosphate hydrolysis in the chicken. J Poult Sci 79(Supp l.1):11

    Google Scholar 

  • Keshavarz K (2000) Nonphytate phosphorus requirement of laying hens with and without phytase on a phase feeding program. Poult Sci 79:748–763

    Article  CAS  Google Scholar 

  • Kornegay ET (2001) Digestion of phosphorus and other nutrients: the role of phytases and factors influencing their activity. In: Bedford MR, Partridge GG (eds) Enzymesinfarm animal nutrition. Cab Publishing, Wallingford, p 432

    Google Scholar 

  • Kuhn I, Ralf G, Janos T (2012) The effect of phytase on ileal phosphorus digestibility and IP6degredation in broilers. NF Pc 290-2

  • Lan GQ, Abdullah N, Jalaludin S, Ho YW (2002) Efficacy of supplementation of a phytase-producing bacterial culture on the performance and nutrient use of broiler chickens fed corn-soybean meal diets. Poult Sci 81(10):1522–1532

    Article  CAS  Google Scholar 

  • Lalpanmawia H, Elangovan AV, Sridhar M, Shet D, Ajith S, Pal DT (2014) Efficacy of phytase on growth performance, nutrient utilization and bone mineralization in broiler chicken. Anim Feed Sci Technol 192:81–89

    Article  CAS  Google Scholar 

  • Lei XG, KU PK, Miller ER, Yokoyama MT, Ullrey DE (1994) Calcium level affects the efficacy of supplemental microbial phytase in corn-soybean meal diets of weanling pigs. J Anim Sci 72:139–143

    Article  CAS  Google Scholar 

  • Leytem AB, Willing BP, Thacker PA (2008) Phytate utilization and phosphorus excretion by broiler chickens fed diets containing cereal grains varying in phytate and phytase content. Anim Feed Sci Technol 146:160–168

    Article  CAS  Google Scholar 

  • Liu N, Liu GH, Li FD, Sands JS, Zhang S, Zheng AJ, Ru YJ (2007) Efficacy of phytases on egg production and nutrient digestibility in layers fed reduced phosphorus diets. Poult Sci 86:2337–2342

    Article  CAS  Google Scholar 

  • Ma Q, Tipping RH, Leforestier C (2008) Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines. J Chem Phys 128:124313

    Article  CAS  Google Scholar 

  • Maenz DD, Classen HL (1998) Phytase activity in the small intestinal brush border membrane of the chicken. Poult Sci 77:557–563

    Article  CAS  Google Scholar 

  • Maguire RO, Sims JT, Saylor WW, Turner BL, Angel R, Applegate TJ (2004) Influence of phytase addition to poultry diets on phosphorus forms and solubility in litters and amended soils. J Environ Qual 33:2306–2316

    Article  CAS  Google Scholar 

  • Maison T, Liu Y, Stein HH (2015) Apparent and standardized total tract digestibility by growing pigs of phosphorus in canola meal from North America and 00-rapeseed meal and 00-rapeseed expellers from Europe without and with microbial phytase. J Anim Sci 93(7):3494–3502

    Article  CAS  Google Scholar 

  • Manobhavan M, Elangovan AV, Sridhar M, Shet D, Ajith S, Pal DT, Gowda NK (2015) Effect of super dosing of phytase on growth performance, ileal digestibility and bone characteristics in broilers fed corn-soya-based diets. J Anim Physiol Anim Nutr 100:93–100

    Article  CAS  Google Scholar 

  • Marounek M, Skrivan M, Dlouha G, Brenova N (2008) Availability of phytate phosphorus and endogenous phytase activity in the digestive tract of laying hens 20 and 47 weeks old. Anim Feed Sci Technol 146:353–359

    Article  CAS  Google Scholar 

  • McGrath S, Maguire RO, Tacy BF, Kike JH (2009) Improving soil nutrition with poultry litter application in low input forage systems. Agron J 102:48–54

    Article  Google Scholar 

  • McGrath JM, Sims JT, Maguire RO, Saylor WW, Angel R, Turner BL (2005) Broiler diet modification and litter storage: impacts on phosphorus in litters, soils, and runoff. J Environ Qual 34:1896–1909

    Article  CAS  Google Scholar 

  • Millennium (2005) Ecosystem assessment. In: Synthesis report. Island, Washington, DC. www.MAweb.org

    Google Scholar 

  • Millner PD (2009) Bioaerosols associated with animal production systems. Bioresour Technol 100:5379–5385

    Article  CAS  Google Scholar 

  • Mittal A, Singh G, Goyal V, Yadav A, Aneja KR, Gautam SK, Aggarwal NK (2011) Isolation and biochemical characterization of acido-thermophilic extracellular phytase producing bacterial strain for potential application in poultry feed. J Microbiol 4:273–282

    Google Scholar 

  • Mou CT (2016) The effects of various concentrations of phytase on broiler growth performance, phosphorus digestibility, tibia ash, and phosphorus utilization. Thesis of the faculty of the Virginia polytechnic institute and state university. Blacksburg, Virginia

    Google Scholar 

  • Mullaney EJ, Ullah AHJ (2003) The term phytase comprises several different classes of enzymes. Biochem. Biophys. Res Commun 312:179–184

    CAS  Google Scholar 

  • Nahm KH (2002) Efficient feed nutrient utilization to reduce pollutants in poultry and swine manure. Crit Rev Environ Sci Technol 32:1–16

    Article  CAS  Google Scholar 

  • Nutrient Requirement Council (NRC) (2007) 7th Revised. National academy press, Washington, DC

    Google Scholar 

  • National Research Council (NRC) (1994) Nutrient requirements of poultry. 9.ed. Washington, DC: National Academy of Science 155p.

  • Nelson TS, Shieh TR, Wodzinski RJ, Ware JR (1971) Effect of supplemental phytase on utilization of phytate phosphorus by chicks. The J Nutr 101:1289–1293

    Article  CAS  Google Scholar 

  • Oatway L, Vasanthan T, Helm JH (2001) Phytic acid. Food Rev Int 17:419–431

    Article  CAS  Google Scholar 

  • Onyango EM, Bedford MR, Adeola O (2005) Phytase activity along the digestive tract of the broiler chick: a comparative study of an Escherichia coli-derived and Peniophoralycii phytase. Can J Anim Sci 85:61–68

    Article  CAS  Google Scholar 

  • Patterson PH, Moore PA, Angel R (2005) Phosphorus and poultry nutrition In ‘Phosphorus: Agriculture and the environment’. (Eds JT Sims, AN Sharpley) 635-682

  • Peter W (1992) Investigations on the use of phytase in the feeding of laying hens. Page 672 in : Proceedings XIX. Worlds Poultry Congress, Amsterdam

    Google Scholar 

  • Phillippy BQ (1999) Susceptibility of wheat and Aspergillus niger phytases to inactivation by gastrointestinal enzymes. J Agric Food Chem 47:1385–1388

    Article  CAS  Google Scholar 

  • Powell S, Johnston S, Gaston L, Southern LL (2008) The effect of dietary phosphorus level and phytase supplementation on growth performance, bone-breaking strength, and litter phosphorus concentration in broilers. Poult Sci 87:949–957

    Article  CAS  Google Scholar 

  • Rapp C, Lantzsch HJ, Drochner W (2001) Hydrolysis of phytic acid by intrinsic plant and supplemented microbial phytase (Aspergillus niger) in the stomach intestine ogmini pigs fitted with re-entrant cannulas: 3. Hydrolysis of phytic acid (IP6) and occurrence of products (IP5, IP4, IP3 and IP2). J Anim Physiol Anim Nutr (Berl) 85:420–430

    Article  CAS  Google Scholar 

  • Ravindran V, Bryden WL, Kornegay ET (1995) Phytases: occurrence, bioavailability and implications in poultry nutrition. Poult Avian Biol Rev 6:125–143

    Google Scholar 

  • Ravindran V, Morel PC, Partridge H, Hruby GGM, Sands JS (2006) Influence of an Escherichia coli-derived phytase on nutrient utilization in broiler starters fed diets containing varying concentrations of phytic acid. Poult Sci 85:82–89

    Article  CAS  Google Scholar 

  • Rutherfurd SM, Chung TK, Morel PCH, Moughan PJ (2004) Effect of microbial phytase on ileal digestibility of phytate phosphorus, total phosphorus, and amino acids in a low-phosphorus diet for broilers. Poult Sci 83:61–68

    Article  CAS  Google Scholar 

  • Rutherfurd SM, Chung TK, Moughan PJ (2002) The effect of microbial phytase on ileal phosphorus and amino acid digestibility in the broiler chicken. Br Poult Sci 43(4):598–606

    Article  CAS  Google Scholar 

  • Schiffman S, Williams M (2005) Science of odor as a potential health issue. J Environ Qual 34:129–138

    CAS  Google Scholar 

  • Schlemmer U, Jany KD, Berk A, Schulz E, Rechkemmer G (2001) Degradation of phytate in the gut of pigs-pathway of gastro-intestinal inositol-phosphate hydrolysis and enzymes involved. Arch Anim Nutr 55:255–280

    CAS  Google Scholar 

  • Selle PH, Cowieson AJ, Ravindran V (2009a) Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livest Sci 124(1):126–141

    Article  Google Scholar 

  • Selle PH, Ravindran V, Partridge GG (2009b) Beneficial effects of xylanase and/or phytase inclusions on ileal amino acid digestibility, energy utilisation, mineral retention and growth performance in wheat-based broiler diets. Anim Feed Sci Technol 153:303–313

    Article  CAS  Google Scholar 

  • Selle PH, Ravindran V (2007) Microbial phytase in poultry nutrition. Anim Feed Sci Technol 135:1–41

    Article  CAS  Google Scholar 

  • Sharpley AN, Herron S, Daniel T (2007) Overcoming the challenges of phosphorus-based management challenges in poultry farming. J Soil Water Conserv 58:30–38

    Google Scholar 

  • Silversides FG, Hruby M (2009) Feed formulation using phytase in laying hen diets. J Appl Poult Res 18:15–22

    Article  CAS  Google Scholar 

  • Silversides FG, Scott TA, Korver DR, Afsharmanesh M, Hruby M (2006) A study on the interaction of xylanase and phytase enzymes in wheat-based diets fed to commercial phytase and xylanase alone or in combination. Anim Feed Sci Technol 146:113–123

    Google Scholar 

  • Silversides FG, Scott TA, Bedford MR (2004) The effect of phytase enzyme and level on nutrient extraction by broilers. Poult Sci 83:985–989

    Article  CAS  Google Scholar 

  • Simon O, Igbasan F (2002) In vitro properties of phytases from various microbial origins. Int J Food Sci Technol 37:813–822

    Article  CAS  Google Scholar 

  • Sims JT, Bergstrom L, Bowman BT, Oenema O (2005) Nutrient management for intensive animal agriculture: policies and practices for sustainability. Soil Use Manag 21:141–151

    Article  Google Scholar 

  • Smulikowska S, Jan C, Anna M (2010) Effect of an organic acid blend and phytase added to a rapeseed cake-containing diet on performance, intestinal morphology, caecal microflora activity, and thyroid status of broiler chickens. J Anim Physiol Anim Nutr 94:15–23

    Article  CAS  Google Scholar 

  • Sousa JPL, Albino LFT, Vaz RGMV, Rodrigues KF, DaSilva GF, Renno LN, Barross VRSM, Kaneko IN (2015) The effect of dietary phytase on broiler performance and digestive, bone, and blood biochemistry characteristics. Revista Brasileira de Ciencia Avícola 17:69–76

    Article  Google Scholar 

  • Steiner T, Mosenthin R, Zimmermannb B, Greiner R, Roth S (2007) Distribution of phytase activity, total phosphorus and phytate phosphorus in legume seeds, cereals and cereal byproducts as influenced by harvest year and cultivar. Anim Feed Sci Technol 133:320–324

    Article  CAS  Google Scholar 

  • Suttle NF (2010) Mineral nutrition of livestock: Fourth Edition. CABI, Wallingford, pp 1–547

    Book  Google Scholar 

  • Szogi AA, Vanotti MB (2009) Prospects for phosphorus recovery from poultry litter. Bioresour Technol 100:5461–5465

    Article  CAS  Google Scholar 

  • Tamim NM, Angel R, Christman M (2004) Influence of dietary calcium and phytase on phytate phosphorus hydrolysis in broiler chickens. Poult Sci 83(8):1358–1367

    Article  CAS  Google Scholar 

  • Tamim NM, Angel R (2003) Phytate phosphorus hydrolysis as influenced by dietary calcium and micro-mineral source in broiler diets. J Agric Food Chem 51(16):4687–4693

    Article  CAS  Google Scholar 

  • Toor GS, Hunger BE (2009) Phosphorus and trace metal dynamics in soils amended with poultry litter and granulates. Soil Use Manag 25:409–418

    Article  Google Scholar 

  • USEPA (1996) Environmental indicators of water quality in the United States. EPA 841-R-96-002. USEPA, Office of Water (4503F), U.S. Government. Printing Office, Washington, DC

    Google Scholar 

  • Viveros A, Centeno C, Brenes A, Canales R, Lozano A (2000) Phytase and acid phosphatase activities in plant feedstuffs. J Agric Food Chem 48:4009–4013

    Article  CAS  Google Scholar 

  • Walk C, Bedford M, Santos T, Paiva D, Bradley J, Wladecki H, Honaker C, McElroy A (2013) Extra-phosphoric effects of super doses of a novel microbial phytase. Poult Sci 92(3):719–725

    Article  CAS  Google Scholar 

  • Weremko D, Fandrejeweski H, Zebrowska T (1997) Bioavailability of phosphorus in feeds of plant origin for pigs. Asian-Australasian J Anim Sci 10:551–566

    Article  CAS  Google Scholar 

  • Wilson MA, Carpenter SR (1999) Economic valuation of freshwater ecosystem services in the United States: 1971–1997. Ecol Appl 9:772-783

  • Woyengo TA, Nyachoti CM (2011) Review: Supplementation of phytase and and carbohydrates to diets for poultry. Can J Anim Sci 91:177–192

    Article  CAS  Google Scholar 

  • Woyengo TA, Slominski BA, Jones RO (2010) Growth performance and nutrient utilization of broiler chickens fed diets supplemented with phytase alone or in combination with citric acid and multi carbohydrase. Poult Sci 89:2221–2229

    Article  CAS  Google Scholar 

  • Wu P, Tian JC, Walker CE, Wang FC (2009) Determination of phytic acid in cereals – a brief review. Int J Food Sci Technol 44:1671–1676

    Article  CAS  Google Scholar 

  • Wyss M, Brugger R, Kronenberger A, Remy R, Fimbel R (1999) Biochemical characterization of fungal phytases ( myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl Environ Microbiol 65:367–373

    CAS  Google Scholar 

  • Yu B, Jana YC, Chung TK, Lee TT, Chioua PWS (2004) Exogenous phytase activity in the gastrointestinal tract of broiler chickens. Anim Feed Sc Tech 117:295–303

    Article  CAS  Google Scholar 

  • Zhang W, Aggrey SE, Pesti GM, Edwards HMJ, Bakalli RI (2003) Genetics of phytate phosphorus bioavailability: heritability and genetic correlation with growth and feed utilization traits in a random-bred chicken population. Poult Sci 82:1075–1079

    Article  CAS  Google Scholar 

  • Zhang W, Aggrey SE, Pesti GM, Bakalli RI, Edwards HM (2005) Correlated responses to divergent selection for phytate phosphorus bioavailability in a random-bred chicken population. Poult Sci 84:536–542

    Article  CAS  Google Scholar 

  • Zyla K, Gogol D, Koreleski J, Swiatkiewicz S, Ledoux DR (1999) Simultaneous application of phytase and xylanase to broiler feeds based on wheat: in vitro measurements of phosphorus and pentose release from wheats and wheat-based feeds. J Sci Food Agric 79:1832=1840

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuegang Luo or Imtiaz Hussain Raja Abbasi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, F., Fakhur-un-Nisa, T., Liu, J. et al. Low digestibility of phytate phosphorus, their impacts on the environment, and phytase opportunity in the poultry industry. Environ Sci Pollut Res 26, 9469–9479 (2019). https://doi.org/10.1007/s11356-018-4000-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-4000-0

Keywords

Navigation