Skip to main content

Advertisement

Log in

Chive (Allium schoenoprasum L.) response as a phytoextraction plant in cadmium-contaminated soils

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cadmium (Cd) soil contamination poses a major hazard to safe food production throughout the world, calling upon actions for decontamination using environmentally friendly methods, such as phytoextraction. In this study, the capability of chive (Allium schoenoprasum L.) for phytoextracting Cd from contaminated soils was tested. Growth of chive was studied in a soil spiked with 0, 15, 30, 60, and 120 mg Cd/kg soil, and then, concentrations of Cd in soil, plant shoots, and roots were measured after harvest. Chive dry matter production was not affected significantly by the different Cd levels in soil, except from the maximum Cd concentration (120 mg Cd/kg soil), where dry matter was reduced by 77%. Cadmium accumulation occurred mostly in roots rather than in shoots, with maximum Cd concentrations 482.48 and 26.65 mg/kg of dry matter, respectively. Translocation factor (the proportion of Cd concentration in the aerial plant parts to that in the roots) was below 1 in all contaminated levels and decreased with increasing Cd concentrations in soil, indicating low Cd reallocation from roots to shoots. Maximum amount of Cd absorption (Cd concentration in shoots), maximum contaminant uptake rate, and minimum clean-up time were all observed in Cd concentration 60 mg/kg soil. Based on chive potential to acquire Cd in its roots and shoots, it can be designated as a convenient species for reducing Cd from contaminated soils up to concentrations of 60 mg Cd/kg soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alkorta I, Hernández-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu C (2004) Chelate-enhanced phytoremediation of soils polluted with heavy metals. Rev Environ Sci Biotechnol 3:55–70

    Article  CAS  Google Scholar 

  • Asadi Kapourchal SA, Asadi Kapourchal SO, Pazira E, Homaee M (2009) Assessing radish (Raphanus sativus L.) potential for phytoremediation of lead-polluted soils resulting from air pollution. Plant Soil Environ 55:202–206

    Article  CAS  Google Scholar 

  • Asadi Kapourchal S, Eisazadeh Lazarjan S, Homaee M (2011) Phytoremediation of cadmium polluted soils from phosphorus fertilizers. Curr Opin Biotechnol 22(suppl. 1):S37

    Article  Google Scholar 

  • Atafar Z, Mesdaghinia AR, Nouri J, Homaee M, Yunesian M, Ahmadi Moghadam M, Mahvi AH (2010) Effect of fertilizer application on soil heavy metal concentration. Environ Monit Assess 160:83–89

    Article  CAS  Google Scholar 

  • Babaeian E, Homaee M, Rahnemaie R (2015) Chelate-enhanced phytoextraction and phytostabilization of lead-contaminated soils by carrot (Daucus carota). Arch Agron Soil Sci 62:339–358

    Article  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Florida, pp 85–107

    Google Scholar 

  • Barazani O, Dudai N, Khakda UR, Golan-Goldhirsh A (2004) Cadmium accumulation in Allium schoenoprasum L. grown in an aqueous medium. Chemosphere 57:1213–1218

    Article  CAS  Google Scholar 

  • Barbafieri M, Pini R, Ciucci A, Tassi E (2011) Field assessment of Pb in contaminated soils and in leaf mustard (Brassica juncea): the LIBS technique. Chem Ecol 27:161–169

    Article  CAS  Google Scholar 

  • Barceló J, Poschenrieder C (2003) Phytoremediation: principles and perspectives. Contrib Sci 2:333–334

    Google Scholar 

  • Barrutia O, Epelde L, García-Plazaola JI, Garbisu C, Becerril JM (2009) Phytoextraction potential of two Rumex acetosa L. accessions collected from metalliferous and non-metalliferous sites: effect of fertilization. Chemosphere 74:259–264

    Article  CAS  Google Scholar 

  • Bellout Y, Khelif L, Guivarch A, Haouche L, Djebbar R, Carol P, Abrous Belbachir O (2016) Impact of edaphic hydrocarbon pollution on the morphology and physiology of pea roots (Pisum sativum L.). Appl Ecol Environ Res 14:511–525

    Article  Google Scholar 

  • Bianchi V, Masciandaro G, Ceccanti B, Peruzzi E, Iannelli R (2011) Phytoremediation of contaminated sediments: evaluation of agronomic properties and risk assessment. Chem Ecol 27:1–11

    Article  CAS  Google Scholar 

  • Bouyoucos GJ (1962) Hydrometer method improved for making particle size analysis of soils. Agron J 54:464–465

    Article  Google Scholar 

  • Branković S, Glišić R, Topuzović M, Marin M (2015) Uptake of seven metals by two macrophytes species: potential for phytoaccumulation and phytoremediation. Chem Ecol 31:583–593

    Article  Google Scholar 

  • Brooks RR (1994) Plants that hyperaccumulate heavy metals. In: Farago ME (ed) Plants and chemical elements: biochemistry, uptake, tolerance and toxicity. VCH Verlagsgesellsschaft, Weinheim, pp 87–105

    Chapter  Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:752708

    Article  Google Scholar 

  • Davari M, Homaee M, Rahnemaie R (2015) An analytical deterministic model for simultaneous phytoremediation of Ni and Cd from contaminated soils. Environ Sci Pollut Res 22:4609–4620

  • Dushenkov D (2003) Trends in phytoremediation of radionuclides. Plant Soil 249:167–175

    Article  CAS  Google Scholar 

  • Farrokhian Firouzi A, Homaee M, Klumpp E, Kasteel R, Tappe W (2015) Bacteria transport and retention in intact calcareous soil columns under saturated flow conditions. J Hydrol Hydromech 63:102–109

    Article  CAS  Google Scholar 

  • Gallarpe VRK, Parilla R (2014) Analysis of heavy metals in Cebu City sanitary landfill, Philippines. J Environ Sci Manag 17:50–59

    Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    Article  CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergisitc use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  Google Scholar 

  • Golan-Goldhirsh A (2006) Plant tolerance to heavy metals, a risk for food toxicity or a means for food fortification with essential metals: the Allium schoenoprassum model. In: Twardowska I, Allen HE, Häggblom MH (eds) Soil and water pollution monitoring, protection and remediation (NATO Science Series IV), Springer, the Netherlands, pp 479–486

  • Greman H, Velikonja-Bolta S, Vodnik D, Kos B, Lestan D (2001) EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant Soil 235:105–114

    Article  Google Scholar 

  • Guidi W, Kadri H, Labrecque M (2012) Establishment techniques to using willow for phytoremediation on a former oil refinery in southern Quebec: achievements and constraints. Chem Ecol 28:49–64

    Article  Google Scholar 

  • Gupta PK (2016) Soil, plant, water and fertilizer analysis, 2nd edn. Agrobios, New Delhi

    Google Scholar 

  • Henry JR (2000) An overview of the phytoremediation of lead and mercury. U.S. Environmental Protection Agency, Office of Salid Waste and Emergency Response, Technology Innovation Office, Washington DC

    Google Scholar 

  • Huang JW, Chen J, Berti WB, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    Article  CAS  Google Scholar 

  • Ingwersen J, Streck T (2005) A regional-scale study on the crop uptake of cadmium from sandy soils: measurement and modeling. J Environ Qual 34:1026–1035

    Article  CAS  Google Scholar 

  • Jafarnejadi AR, Homaee M, Sayyad G, Bybordi M (2011) Large scale spatial variability of accumulated cadmium in the wheat farm grains. Soil Sediment Contam 20:98–113

    Article  CAS  Google Scholar 

  • Jafarnejadi AR, Sayyad G, Homaee M, Davamei AH (2013) Spatial variability of soil total and DTPA-extractable cadmium caused by long-term application of phosphate fertilizers, crop rotation, and soil characteristics. Environ Monit Assess 185:4087–4096

    Article  CAS  Google Scholar 

  • Janzen HH (1993) Soluble salts. In: Carter MR (ed) Soil sampling and methods of analysis. Lewis Publishers, Florida, pp 161–166

  • Jiang W, Liu D, Hou W (2001) Hyperaccumulation of cadmium by roots, bulbs and shoots of garlic (Allium sativum L.). Bioresour Technol 76:9–13

    Article  CAS  Google Scholar 

  • Khodaverdiloo H, Homaee M (2008) Modeling cadmium and lead phytoextraction from contaminated soils. Polish Soil Sci 41:149–162

    CAS  Google Scholar 

  • Koopmans GF, Römkens PF, Fokkema MJ, Song J, Luo YM, Japenga J, Zhao FJ (2008) Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Environ Pollut 156:905–914

    Article  CAS  Google Scholar 

  • Kumar PB, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  CAS  Google Scholar 

  • Kumar N, Bauddh K, Kumar S, Dwivedi N, Singh DP, Barman SC (2013) Accumulation of metals in weed species grown on the soil contaminated with industrial waste and their phytoremediation potential. Ecol Eng 61:491–495

    Article  Google Scholar 

  • Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Haz Subst Res 2:1–25

    Google Scholar 

  • Lefèvre I, Marchal G, Meerts P, Corréal E, Lutts S (2009) Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environ Exp Bot 65:142–152

    Article  Google Scholar 

  • Liu W, Shu WS, Lan CY (2004) Viola baoshanensis, a plant that hyperaccumulates cadmium. Chinese Sci Bull 49:29–32

  • Liu DH, Zou J, Meng QM, Zou JH, Jiang WS (2009) Uptake and accumulation and oxidative stress in garlic (Allium sativum L.) under lead phytotoxicity. Ecotoxicology 18:134–143

    Article  CAS  Google Scholar 

  • McLean EO (1982) Soil pH and lime requirement. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis (part 2). American Society of Agronomy and Soil Science Society of America, Madison, pp 199–223

    Google Scholar 

  • Murakami M, Ae N, Ishikawaa S (2007) Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.). Environ Pollut 145:96–103

    Article  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1982) Carbonate and gypsum. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis (part 2). American Society of Agronomy and Soil Science Society of America, Madison, pp 539–577

    Google Scholar 

  • Nouri M, Homaee M, Bybordi M (2014) Quantitative assessment of LNAPLs retention in soil porous media. Soil Sediment Contam 23:801–819

    Article  CAS  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126

    Article  CAS  Google Scholar 

  • Pedron F, Petruzzelli G (2011) Green remediation strategies to improve the quality of contaminated soils. Chem Ecol 27:89–95

    Article  CAS  Google Scholar 

  • Prasad MNV, Freitas HMO (2003) Metal hyperaccumulation in plants – biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:285–321

    Article  Google Scholar 

  • Rowell DL (1994) Soil science: methods and applications. Longman, London

    Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnol 13:468–474

    CAS  Google Scholar 

  • Sas-Nowosielska A, Kucharski R, Makowski E, Pogrzeba M, Kuperberg JM, Kryński K (2004) Phytoextraction crop disposal – an unsolved problem. Environ Pollut 128:373–379

    Article  CAS  Google Scholar 

  • Schmidt U (2003) Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J Environ Qual 32:1939–1954

    Article  CAS  Google Scholar 

  • Schnoor JL (1997) Phytoremediation of soil and ground water. Technology Evaluation Report TE-02-01. Ground-Water Remediation Technologies Analysis Center (GWRTAC), Pittsburgh

    Google Scholar 

  • Shi GR, Cai QS (2009) Cadmium tolerance and accumulation in eight potential energy crops. Biotechnol Adv 27:555–561

    Article  CAS  Google Scholar 

  • Song X, Hu X, Ji P, Li Y, Chi G, Song Y (2012) Phytoremediation of cadmium-contaminated farmland soil by the hyperaccumulator Beta vulgaris L. var cicla. Bull Environ Contam Toxicol 88:623–626

    Article  CAS  Google Scholar 

  • Soudek P, Kotyza J, Lenikusová I, Petrová Š, Benešová D, Vaněk T (2009) Accumulation of heavy metals in hydroponically cultivated garlic (Allium sativum L.), onion (Allium cepa L.), leek (Allium porrum L.) and chive (Allium schoenoprasum L.). J Food Agric Environ 7:761–769

    CAS  Google Scholar 

  • Soudek P, Petrová Š, Vaněk T (2011) Heavy metal uptake and stress responses of hydroponically cultivated garlic (Allium sativum L.). Environ Exp Bot 74:289–295

    Article  CAS  Google Scholar 

  • Souza LA, Piotto FA, Nogueirol RC, Azevedo RA (2013) Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents. Sci Agric 70:290–295

    Article  CAS  Google Scholar 

  • Stein ML (1999) Interpolation of spatial data: some theory for kriging. Springer, New York

    Book  Google Scholar 

  • Sun YB, Zhou QX, Diao CY (2008) Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresour Technol 99:1103–1110

  • Sun YB, Zhou QX, Wang L, Liu WT (2009) Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. J Haz Mat 161:808–814

  • Taylor MD, Percival HJ (2001) Cadmium in soil solutions from a transect of soils away from a fertiliser bin. Environ Pollut 113:35–40

    Article  CAS  Google Scholar 

  • Verkleij JAC, Golan-Goldhirsh A, Antosiewisz DM, Schwitzguébel JP, Schröder P (2009) Dualities in plant tolerance to pollutants and their uptake and translocation to the upper plant parts. Environ Exp Bot 67:10–22

    Article  CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 63:251–257

    Article  Google Scholar 

  • Wang MJ, Wang WX (2009) Cadmium in three marine phytoplankton: accumulation. subcellular fate and thiol induction Aquat Toxicol 95:99–107

    Article  CAS  Google Scholar 

  • Wei SH, Zhou QX, Wang X, Zhang KS, Guo GL, Ma LQ (2005) A newly-discovered Cd-hyperaccumulator Solanum nigrum L. Chinese Sci Bull 50:33–38

  • Wei SH, Zhou QX, Mathews S (2008) A newly found cadmium accumulator – Taraxacum mongolicum. J Haz Mat 159:544–547

    Article  CAS  Google Scholar 

  • Wei SH, Niu RC, Srivastava M, Zhou QX, Wu ZJ, Sun TH, Hu YH, Li YM (2009) Bidens tripartite L.: a Cd accumulator confirmed by pot culture and site sampling experiment. J Hazard Mater 170:1269–1272

  • Xu P, Zou J, Meng QM, Zou JH, Jiang WS, Liu DH (2008) Effects of Cd2+ on seedling growth of garlic (Allium sativum L.) and selected physiological and biochemical characters. Bioresour Technol 99:6372–6378

    Article  CAS  Google Scholar 

  • Yang X, Li T, Yang J, He Z, Lu L, Meng F (2006) Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance. Planta 224:185–195

    Article  CAS  Google Scholar 

  • Zhang HY, Jiang Y, He Z, Ma M (2005) Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol 162:977–984

    Article  CAS  Google Scholar 

  • Zhao FJ, Lombi E, McGrath SP (2003) Assesing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249:37–43

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was granted by Tarbiat Modares University, Grant Number IG-39713.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Safoora Asadi Kapourchal or Christos A. Damalas.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eisazadeh, S., Asadi Kapourchal, S., Homaee, M. et al. Chive (Allium schoenoprasum L.) response as a phytoextraction plant in cadmium-contaminated soils. Environ Sci Pollut Res 26, 152–160 (2019). https://doi.org/10.1007/s11356-018-3545-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3545-2

Keywords

Navigation