Skip to main content
Log in

Versatility of iron-rich steel waste for the removal of high arsenic and sulfate concentrations in water

  • Advanced Oxidation Technologies: State-of-the-Art in Ibero-American Countries
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aim of this work is to evaluate the application of a steel waste, basic oxygen furnace sludge (BOFS), rich in iron, to treat water contaminated with elevated arsenic and sulfate concentrations. In the first step, three doses (10, 60, and 80 g L−1) of BOFS were tested to investigate the removal of As(III) and As(V) (67 mg L−1) and sulfate (3700 mg L−1) separately from an aqueous solution. In the second step, the efficacies of BOFS (10 g L−1) and commercial ZVI (5 g L−1) were compared to simultaneously remove arsenic and sulfate. The pH of the feed solution was adjusted to 2.5 and monitored during the experiment. The use of BOFS achieved arsenic removal up to 92% and sulfate removal of nearly 40% after 72 h of contact time. Use of BOFS also increased the solution pH to 12. Similar removal levels were achieved with both BOFS and ZVI. These results confirm the potential application of BOFS to remove high arsenic and sulfate concentrations from acidic solutions. The data obtained here should be used as a basis for further studies on the remediation of acid mine drainage with high concentrations of arsenic and sulfate using an abundant and low-cost steel waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn JS, Chon C-M, Moon H-S, Kim K-W (2003) Arsenic removal using steel manufacturing byproducts as permeable reactive materials in mine tailing containment systems. Water Res 37:2478–2488

    Article  CAS  Google Scholar 

  • Amorim CC, Dutra PR, Leão MMD, Pereira MC, Henriques AB, Fabris JD, Lago RM (2012) Controlled reduction of steel waste to produce active iron phases for environmental applications. Chem Eng J 209:645–651

    Article  CAS  Google Scholar 

  • APHA (2005) Standard methods fo the examination of water and wastewater. American Public Health Association, Washington DC

    Google Scholar 

  • Bang S, Johnson MD, Korfiatis GP, Meng X (2005) Chemical reactions between arsenic and zero-valent iron in water. Water Res 39:763–770

    Article  CAS  Google Scholar 

  • Bard AJ, Parsons R, Jordan J (1985) Standard potentials in aqueous solutions. Marcel Dekker, New York

    Google Scholar 

  • Beak DG, Wilkin RT (2009) Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: part 2. Geochemical modeling and solid phase studies. J Contaminant Hydrol 106:15–28

    Article  CAS  Google Scholar 

  • Bissen M, Frimmel FH (2003) Arsenic — a review. Part I: occurrence, toxicity, speciation, mobility. Acta Hydrochim Hydrobiol 31:9–18

    Article  CAS  Google Scholar 

  • Biterna M, Antonoglou L, Lazou E, Voutsa D (2010) Arsenite removal from waters by zero valent iron: batch and column tests. Chemosphere 78:7–12

    Article  CAS  Google Scholar 

  • Blowes DW, Ptacek CJ, Benner SG, McRae CWT, Bennett TA, Puls RW (2000) Treatment of inorganic contaminants using permeable reactive barriers. J Contam Hydrol 45:123–137

    Article  CAS  Google Scholar 

  • Bothe JV, Brown PW (1999a) The stabilities of calcium arsenates at 23±1°C. J Hazard Mater 69:197–207

    Article  CAS  Google Scholar 

  • Bothe JV, Brown PW (1999b) Arsenic immobilization by calcium arsenate formation. Environ Sci Technol 33:3806–3811

    Article  CAS  Google Scholar 

  • Burman J-O, Ponter C, Boströn K (1978) Metaborate digestion procedure for inductively coupled plasmaoptical emission spectrometry. Analytical Chemistry 50:679–680

  • Burman JO, Ponter C, Bostrom K (2012) Metaborate digestion procedure for inductively coupled plasma-optical emission spectrometry. Anal Chem 50(4):679–680

    Article  Google Scholar 

  • Caldeira CL, Ciminelli VST, Osseo-Asare K (2010) The role of carbonate ions in pyrite oxidation in aqueous systems. Geochim Cosmochim Acta 74:1777–1789

    Article  CAS  Google Scholar 

  • Cantrell KJ, Kaplan DI, Wietsma TW (1995) Zero-valent iron for the in situ remediation of selected metals in groundwater. J Hazard Mater 42:201–212

    Article  CAS  Google Scholar 

  • Cooper MA, Hawthorne FC (1996) The crystal structure of rapidcreekite, Ca 2 (SO 4 )(CO 3 )(H 2 O) 4 , and its relation to the structure of gypsum. Can Mineral 34:99–106

    CAS  Google Scholar 

  • Das B, Prakash S, Reddy PSR, Misra VN (2007) An overview of utilization of slag and sludge from steel industries. Resour Conserv Recycl 50:40–57

    Article  Google Scholar 

  • Devi P, Saroha AK (2017) Utilization of sludge based adsorbents for the removal of various pollutants: a review. Sci Total Environ 578:16–33

    Article  CAS  Google Scholar 

  • Dhoble YN, Ahmed S (2018) Review on the innovative uses of steel slag for waste minimization. J Mater Cycles Waste Manag

  • Dimitrova SV (1996) Metal sorption on blast-furnace slag. Water Res 30:228–232

    Article  CAS  Google Scholar 

  • Dydo P, Turek M, Ciba J (2003) Scaling analysis of nanofiltration systems fed with saturated calcium sulfate solutions in the presence of carbonate ions. Desalination 159:245–251

    Article  CAS  Google Scholar 

  • Fendorf S, Michael HA, van Geen A (2010): Spatial and temporal variations of groundwater arsenic in south and Southeast Asia. Science 328, 1123–1127

  • Frade PR, Notini L, Santos SV, Moreira RFPM, Leão MMD, Amorim CC (2018) Feasibility study of the use of basic oxygen furnace sludge in a permeable reactive barrier. J Hazard Mater 351:188–195

    Article  CAS  Google Scholar 

  • Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205

    Article  CAS  Google Scholar 

  • Guo X, Yang Z, Dong H, Guan X, Ren Q, Lv X, Jin X (2016) Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water. Water Res 88:671–680

    Article  CAS  Google Scholar 

  • Habuda-Stanić M, Nujić M (2015) Arsenic removal by nanoparticles: a review. Environ Sci Pollut Res 22:8094–8123

    Article  CAS  Google Scholar 

  • Hug SJ, Leupin O (2003) Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environ Sci Technol 37:2734–2742

    Article  CAS  Google Scholar 

  • IARC (2012) Monographs on the Evaluation of Carcinogenic Risks to Humans., IARC Monographs. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • Kanel SR, Choi H, Kim J-Y, Vigneswaran S, Shim WG (2006) Removal of arsenic(III) from groundwater using low-cost industrial by-products—blast furnace slag. Water Qual Res J Can 41:130–139

    Article  CAS  Google Scholar 

  • Katsoyiannis IA, Voegelin A, Zouboulis AI, Hug SJ (2015) Enhanced as(III) oxidation and removal by combined use of zero valent iron and hydrogen peroxide in aerated waters at neutral pH values. J Hazard Mater 297:1–7

    Article  CAS  Google Scholar 

  • Kefeni KK, Msagati TM, Maree JP, Mamba BB (2015) Metals and sulphate removal from acid mine drainage in two steps via ferrite sludge and barium sulphate formation. Miner Eng 81:79–87

    Article  CAS  Google Scholar 

  • Lackovic JA, Nikolaidis NP, Dobbs GM (2000) Inorganic arsenic removal by zero-valent Iron. Environ Eng Sci 17:29–39

    Article  CAS  Google Scholar 

  • Ladeira ACQ, Ciminelli VST (2004) Adsorption and desorption of arsenic on an oxisol and its constituents. Water Res 38:2087–2094

    Article  CAS  Google Scholar 

  • Leupin OX, Hug SJ (2005) Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron. Water Res 39:1729–1740

    Article  CAS  Google Scholar 

  • Li Q, Xu X, Cui H, Pang J, Wei Z, Sun Z, Zhai J (2012) Comparison of two adsorbents for the removal of pentavalent arsenic from aqueous solutions. J Environ Manag 98:98–106

    Article  CAS  Google Scholar 

  • Litter MI, Slodowicz M (2017): An overview on heterogeneous Fenton and photoFenton reactions using zerovalent iron materials. J Adv Oxidat Technol

  • López-Delgado A, Pérez C, López FA (1998) Sorption of heavy metals on blast furnace sludge. Water Res 32:989–996

    Article  Google Scholar 

  • Manning BA, Hunt ML, Amrhein C, Yarmoff JA (2002) Arsenic(III) and arsenic(V) reactions with Zerovalent Iron corrosion products. Environ Sci Technol 36:5455–5461

    Article  CAS  Google Scholar 

  • Masindi V, Akinwekomi V, Maree JP, Muedi KL (2017) Comparison of mine water neutralisation efficiencies of different alkaline generating agents. J Environ Chem Eng 5:3903–3913

    Article  CAS  Google Scholar 

  • Masindi V, Osman MS, Mbhele RN, Rikhotso R (2018) Fate of pollutants post treatment of acid mine drainage with basic oxygen furnace slag: validation of experimental results with a geochemical model. J Clean Prod 172:2899–2909

    Article  CAS  Google Scholar 

  • Miao Z, Brusseau ML, Carroll KC, Carreón-Diazconti C, Johnson B (2012) Sulfate reduction in groundwater: characterization and applications for remediation. Environ Geochem Health 34:539–550

    Article  CAS  Google Scholar 

  • Morgada ME, Levy IK, Salomone V, Farías SS, López G, Litter MI (2009) Arsenic (V) removal with nanoparticulate zerovalent iron: effect of UV light and humic acids. Catal Today 143:261–268

    Article  CAS  Google Scholar 

  • Müller K, Ciminelli VST, Dantas MSS, Willscher S (2010) A comparative study of as(III) and as(V) in aqueous solutions and adsorbed on iron oxy-hydroxides by Raman spectroscopy. Water Res 44:5660–5672

    Article  CAS  Google Scholar 

  • Name T, Sheridan C (2014) Remediation of acid mine drainage using metallurgical slags. Miner Eng 64:15–22

    Article  CAS  Google Scholar 

  • Nikolaidis NP, Dobbs GM, Lackovic JA (2003) Arsenic removal by zero-valent iron: field, laboratory and modeling studies. Water Res 37:1417–1425

    Article  CAS  Google Scholar 

  • Noubactep C (2015) Metallic iron for environmental remediation: a review of reviews. Water Res 85:114–123

    Article  CAS  Google Scholar 

  • Oh C, Rhee S, Oh M, Park J (2012) Removal characteristics of as(III) and as(V) from acidic aqueous solution by steel making slag. J Hazard Mater 213-214:147–155

    Article  CAS  Google Scholar 

  • Pantuzzo FL, Ciminelli VST (2010) Arsenic association and stability in long-term disposed arsenic residues. Water Res 44:5631–5640

    Article  CAS  Google Scholar 

  • Le Pape P, Battaglia-Brunet F, Parmentier M, Joulian C, Gassaud C, Fernandez-Rojo L, Guigner J-M, Ikogou M, Stetten L, Olivi L, Casiot C, Morin G (2017): Complete removal of arsenic and zinc from a heavily contaminated acid mine drainage via an indigenous SRB consortium. J Hazard Mater 321, 764–772

  • Puls RW, Paul CJ, Powell RM (1999) The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: a field test. Appl Geochem 14:989–1000

    Article  CAS  Google Scholar 

  • Rajagopal BS, LeGall J (1989) Utilization of cathodic hydrogen by hydrogen-oxidizing bacteria. Appl Microbiol Biotechnol 31:406–412

    Article  CAS  Google Scholar 

  • Rakotonimaro TV, Neculita CM, Bussière B, Benzaazoua M, Zagury GJ (2017) Recovery and reuse of sludge from active and passive treatment of mine drainage-impacted waters: a review. Environ Sci Pollut Res 24:73–91

    Article  CAS  Google Scholar 

  • Ramaswami A, Tawachsupa S, Isleyen M (2001) Batch-mixed Iron treatment of high arsenic waters. Water Res 35:4474–4479

    Article  CAS  Google Scholar 

  • Santos SV, Amorim CC, Andrade LN, Calixto NCZ, Henriques AB, Ardisson JD, Leão MMD (2015) Steel wastes as versatile materials for treatment of biorefractory wastewaters. Environ Sci Pollut Res 22:882–893

    Article  CAS  Google Scholar 

  • Sarkar A, Paul B (2016) The global menace of arsenic and its conventional remediation - a critical review. Chemosphere 158:37–49

    Article  CAS  Google Scholar 

  • Sasaki K, Nukina S, Wilopo W, Hirajima T (2008) Removal of arsenate in acid mine drainage by a permeable reactive barrier bearing granulated blast furnace slag: column study. Mater Trans 49:835–844

    Article  CAS  Google Scholar 

  • Shabalala AN, Ekolu SO, Diop S, Solomon F (2017) Pervious concrete reactive barrier for removal of heavy metals from acid mine drainage − column study. J Hazard Mater 323:641–653

    Article  CAS  Google Scholar 

  • Sheridan C, Harding K, Koller E, De Pretto A (2013): A comparison of charcoal- and slag-based constructed wetlands for acid mine drainage remediation. Water SA 39, 369–374

  • Shi C, Qian J (2000) High performance cementing materials from industrial slags — a review. Resour Conserv Recycl 29:195–207

    Article  Google Scholar 

  • Shokes TE, Möller G (1999) Removal of dissolved heavy metals from acid rock drainage using Iron metal. Environ Sci Technol 33:282–287

    Article  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Su C, Puls RW (2001) Arsenate and Arsenite removal by Zerovalent Iron: kinetics, redox transformation, and implications for in situ groundwater remediation. Environ Sci Technol 35:1487–1492

    Article  CAS  Google Scholar 

  • Sun H, Wang L, Zhang R, Sui J, Xu G (2006) Treatment of groundwater polluted by arsenic compounds by zero valent iron. J Hazard Mater 129:297–303

    Article  CAS  Google Scholar 

  • Sun F, Osseo-Asare KA, Chen Y, Dempsey BA (2011) Reduction of as(V) to as(III) by commercial ZVI or as(0) with acid-treated ZVI. J Hazard Mater 196:311–317

    Article  CAS  Google Scholar 

  • Sun Y, Guan X, Wang J, Meng X, Xu C, Zhou G (2014) Effect of weak magnetic field on arsenate and Arsenite removal from water by Zerovalent Iron: an XAFS investigation. Environ Sci Technol 48:6850–6858

    Article  CAS  Google Scholar 

  • Villa-Gomez DK, Pakshirajan K, Maestro R, Mushi S, Lens PNL (2015) Effect of process variables on the sulfate reduction process in bioreactors treating metal-containing wastewaters: factorial design and response surface analyses. Biodegradation 26:299–311

    Article  CAS  Google Scholar 

  • Wilkens J, Shoemaker SH, Bazela WB, Egler AP, Sinha R, Bain JG (2003) Arsenic removal from groundwater using a BOF slag at the DuPont East Chicago (IN) site. RTDF PRB Action Teem Meeting, Niagara Falls

    Google Scholar 

  • Wilkin RT, Acree SD, Ross RR, Beak DG, Lee TR (2009) Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: part 1. Hydrogeochem studies. J Contamin Hydrol 106:1–14

    Article  CAS  Google Scholar 

  • Yang J-S, Kim Y-S, Park S-M, Baek K (2014) Removal of as(III) and as(V) using iron-rich sludge produced from coal mine drainage treatment plant. Environ Sci Pollut Res 21:10878–10889

    Article  CAS  Google Scholar 

  • Yang Z, Shan C, Zhang W, Jiang Z, Guan X, Pan B (2016) Temporospatial evolution and removal mechanisms of as(V) and se(VI) in ZVI column with H2O2 as corrosion accelerator. Water Res 106:461–469

    Article  CAS  Google Scholar 

  • Yang Z, Xu H, Shan C, Jiang Z, Pan B (2017) Effects of brining on the corrosion of ZVI and its subsequent as(III/V) and se(IV/VI) removal from water. Chemosphere 170:251–259

    Article  CAS  Google Scholar 

  • Yi H, Xu G, Cheng H, Wang J, Wan Y, Chen H (2012) An overview of utilization of steel slag. Procedia Environ Sci 16:791–801

    Article  CAS  Google Scholar 

  • Zhang F-S, Itoh H (2005) Iron oxide-loaded slag for arsenic removal from aqueous system. Chemosphere 60:319–325

    Article  CAS  Google Scholar 

  • Zhu YN, Zhang XH, Xie QL, Wang DQ, Cheng GW (2006) Solubility and Stability of Calcium Arsenates at 25∘C 169:221–238

  • Ziemkiewicz P, Skousen J (1999) Steel Slag Acid Mine Drainage Treat Control 1999:651–656

    Google Scholar 

  • Zvimba JN, Siyakatshana N, Mathye M (2016) Passive neutralization of acid mine drainage using basic oxygen furnace slag as neutralization material: experimental and modelling. Water Sci Technol 75:1014–1024

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Brazilian government agencies—FAPEMIG, CAPES, and CNPQ—for funding this research. The authors would like to thank Filipe A. T. Alves and Patricia Lopes at LAQ-DEMET/UFMG for performing the ICP-OES analyses. The authors would like to thank the Center of Microscopy at Universidade Federal de Minas Gerais (http://www.microscopia.ufmg.br) for providing the equipment and technical support for the experiments involving water analysis and electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila C. Amorim.

Additional information

Responsible editor: Vítor Pais Vilar

Electronic supplementary material

ESM 1

(DOCX 67.6 kb)

ESM 2

(PPTX 6.76 mb)

ESM 1

(PPTX 5.43 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo, S.F., Caldeira, C.L., Ciminelli, V.S.T. et al. Versatility of iron-rich steel waste for the removal of high arsenic and sulfate concentrations in water. Environ Sci Pollut Res 26, 4266–4276 (2019). https://doi.org/10.1007/s11356-018-3168-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3168-7

Keywords

Navigation