Skip to main content
Log in

Use of carbon-based composites to enhance performance of TiO2 for the simultaneous removal of nitrates and organics from aqueous environments

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The simultaneous photocatalytic removal of nitrate from aqueous environment in presence of organic hole scavenger using TiO2 has long been explored. However, the use of unmodified TiO2 in such reaction resulted in non-performance or release of significant amount of undesirable reaction products in the process, a problem that triggered surface modification of TiO2 for enhanced photocatalytic performance. Previous studies focused on decreasing rate of charge carrier recombination and absorption of light in the visible region. Yet, increasing active sites and adsorption capacity by combining TiO2 with a high surface area adsorbent such as activated carbon (AC) remains unexploited. This study reports the potential of such modification in simultaneous removal of nitrates and oxalic acid in aqueous environment. The adsorptive behaviour of nitrate and oxalic acid on TiO2 and TiO2/AC composites were studied. The Langmuir adsorption coefficient for nitrate was four times greater than that of oxalic acid. However, the amount of oxalic acid adsorbed was about 10 times greater than the amount of nitrate taken up. Despite this advantage, the materials did not appear to produce more active photocatalysts for the simultaneous degradation of nitrate and oxalic acid. The photocatalytic activity of TiO2 and its carbon-based composites was improved by combination with Cu2O particles. Consequently, 2.5 Cu2O/TiO2 exhibited the maximum photocatalytic performance with 57.6 and 99.8% removal of nitrate and oxalic acid, respectively, while selectivity stood at 45.7, 12.4 and 41.9% for NH4+, NO2 and N2, respectively. For the carbon based, 2.5 Cu2O/TiO2-20AC showed removal of 12.7% nitrate and 80.3% oxalic acid and achieved 21.6, 0 and 78.4% selectivity for NH4+, NO2 and N2, respectively. Using the optimal AC loading (20 wt%) resulted in significant decrease in the selectivity for NH4+ with no formation of NO2, which unveils that selectivity for N2 and low/no selectivity for undesirable products can be manipulated by controlling the rate of consumption of oxalic acid. In contract, no nitrate reduction was observed with Cu2O promoted TiO2-T and its TiO2-(T)-20AC, which may be connected to amorphous nature of TiO2-T and perhaps served as charge carrier trapping sites that impeded activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afkhami A, Madrakian T, Karimi Z (2007) The effect of acid treatment of carbon cloth on the adsorption of nitrite and nitrate ions. J Hazard Mater 144(1–2):427–431. https://doi.org/10.1016/j.jhazmat.2006.10.062

    Article  CAS  Google Scholar 

  • Anderson JA (2012) Simultaneous photocatalytic degradation of nitrate and oxalic acid over gold promoted titania. Catal Today 181(1):171–176

    Article  CAS  Google Scholar 

  • Anderson JA, Fernandez-Garcia M (2009) Catalytic and photocatalytic removal of pollutants from aqueous sources. Catalysis 21:51–81

    Article  CAS  Google Scholar 

  • Ao Y, Xu J, Fu D, Shen X, Yuan C (2008) Low temperature preparation of anatase TiO2-coated activated carbon. Colloids Surf A Physicochem Eng Asp 312(2–3):125–130

    Article  CAS  Google Scholar 

  • Baek M, Jung W, Yoon J, Hong J, Lee Y, Suh J (2013) Preparation, characterization and photocatalytic activity evaluation of micro- and mesoporous TiO2/spherical activated carbon. J Ind Eng Chem 19(2):469–477. https://doi.org/10.1016/j.jiec.2012.08.026

    Article  CAS  Google Scholar 

  • Beltrán FJ, Rivas FJ, Montero-de-Espinosa R (2005) Iron type catalysts for the ozonation of oxalic acid in water. Water Res 39(15):3553–3564

    Article  Google Scholar 

  • Bems B, Jentoft FC, Schlögl R (1999) Photoinduced decomposition of nitrate in drinking water in the presence of titania and humic acids. Appl Catal B Environ 20(2):155–163

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sillanpää M (2011) A review of emerging adsorbents for nitrate removal from water. Chem Eng J 168(2):493–504. https://doi.org/10.1016/j.cej.2011.01.103

    Article  CAS  Google Scholar 

  • Boccuzzi F, Chiorino A, Martra G, Gargano M, Ravasio N, Carrozzini B (1997) Preparation, characterization, and activity of cu/TiO2 catalysts: I. Influence of the preparation method on the dispersion of copper in cu/TiO2. J Catal 165(2):129–139

    Article  CAS  Google Scholar 

  • Choi J, Lee H, Choi Y, Kim S, Lee S, Lee S, Lee J (2014) Heterogeneous photocatalytic treatment of pharmaceutical micropollutants: effects of wastewater effluent matrix and catalyst modifications. Appl Catal B Environ 147(0):8–16. https://doi.org/10.1016/j.apcatb.2013.08.032

    Article  CAS  Google Scholar 

  • Coloma F, Bachiller-Baeza B, Rochester CH, Anderson JA (2001) Infrared study of competitive crotonaldehyde and CO adsorption on Cu/TiO2. Phys Chem Chem Phys 3(21):4817–4825. https://doi.org/10.1039/b106244c

    Article  CAS  Google Scholar 

  • Fahmi A, Minot C, Fourré P, Nortier P (1995) A theoretical study of the adsorption of oxalic acid on TiO2. Surf Sci 343(3):261–272. https://doi.org/10.1016/0039-6028(95)00813-6

    Article  CAS  Google Scholar 

  • Gao W, Jin R, Chen J, Guan X, Zeng H, Zhang F, Guan N (2004) Titania-supported bimetallic catalysts for photocatalytic reduction of nitrate. Catal Today 90(3–4):331–336. https://doi.org/10.1016/j.cattod.2004.04.043

    Article  CAS  Google Scholar 

  • Gao B, Yap PS, Lim TM, Lim T (2011) Adsorption-photocatalytic degradation of acid red 88 by supported TiO2: effect of activated carbon support and aqueous anions. Chem Eng J 171:1098–1107

    Article  CAS  Google Scholar 

  • Garcia A, Matos J (2010) Photocatalytic activity of TiO2 on activated carbon under visible light in the photodegradation of phenol. Open Mater Sci J 4:2–4

    CAS  Google Scholar 

  • Hadjiivanov K, Bushev V, Kantcheva M, Klissurski D (1994) Infrared spectroscopy study of the species arising during NO2 adsorption on TiO2 (anatase). Langmuir 10(2):464–471

    Article  CAS  Google Scholar 

  • He H (2016) Facile synthesis of ultrafine CuS nanocrystalline/TiO2: Fe nanotubes hybrids and their photocatalytic and Fenton-like photocatalytic activities in the dye degradation. Microporous Mesoporous Mater 227:31–38

    Article  CAS  Google Scholar 

  • He H, Huang J, Cao L, Wu J (2010) Photodegradation of methyl orange aqueous on MnWO4 powder under different light resources and initial pH. Desalination 252(1–3):66–70

    Article  CAS  Google Scholar 

  • Hirayama J, Kamiya Y (2014) Combining the photocatalyst Pt/TiO2 and the nonphotocatalyst SnPd/Al2O3 for effective photocatalytic purification of groundwater polluted with nitrate. ACS Catal 4(7):2207–2215

    Article  CAS  Google Scholar 

  • Janusz W, Matysek M (2006) Co-adsorption of Cd(II) and oxalate ions at the TiO2/electrolyte solution interface. J Colloid Interface Sci 296(1):22–29. https://doi.org/10.1016/j.jcis.2005.08.067

    Article  CAS  Google Scholar 

  • Jin R, Gao W, Chen J, Zeng H, Zhang F, Liu Z, Guan N (2004) Photocatalytic reduction of nitrate ion drinking water by using metal-loaded MgTiO3-TiO2 composite semiconductor catalyst. J Photochem Photobiol A Chem 162(2–3):585–590

    Article  CAS  Google Scholar 

  • Lalitha K, Sadanandam G, Kumari VD, Subrahmanyam M, Sreedhar B, Hebalkar NY (2010) Highly stabilized and finely dispersed Cu2O/TiO2: a promising visible sensitive photocatalyst for continuous production of hydrogen from glycerol: water mixtures. J Phys Chem C 114(50):22181–22189

    Article  CAS  Google Scholar 

  • Lee DK, Kim SC, Cho IC, Kim SJ, Kim SW (2004) Photocatalytic oxidation of microcystin-LR in a fluidized bed reactor having TiO2-coated activated carbon. Sep Purif Technol 34:59–66

    Article  CAS  Google Scholar 

  • Li Y, Wasgestian F (1998) Photocatalytic reduction of nitrate ions on TiO2 by oxalic acid. J Photochem Photobiol A Chem 112(2–3):255–259. https://doi.org/10.1016/S1010-6030(97)00293-1

    Article  CAS  Google Scholar 

  • Li L, Xu Z, Liu F, Shao Y, Wang J, Wan H, Zheng S (2010) Photocatalytic nitrate reduction over Pt–Cu/TiO2 catalysts with benzene as hole scavenger. J Photochem Photobiol A Chem 212(2–3):113–121. https://doi.org/10.1016/j.jphotochem.2010.04.003

    Article  CAS  Google Scholar 

  • Li Y, Wang B, Liu S, Duan X, Hu Z (2015) Synthesis and characterization of Cu2O/TiO2 photocatalysts for H2 evolution from aqueous solution with different scavengers. Appl Surf Sci 324:736–744. https://doi.org/10.1016/j.apsusc.2014.11.027

    Article  CAS  Google Scholar 

  • Lim T, Yap P, Srinivasan M, Fane AG (2011) TiO2/AC composites for synergistic adsorption-photocatalysis processes: present challenges and further developments for water treatment and reclamation. Crit Rev Environ Sci Technol 41(13):1173–1230

    Article  CAS  Google Scholar 

  • Liu L, Zhao C, Li Y (2012) Spontaneous dissociation of CO2 to CO on defective surface of Cu(I)/TiO2- x nanoparticles at room temperature. J Phys Chem C 116(14):7904–7912. https://doi.org/10.1021/jp300932b

    Article  CAS  Google Scholar 

  • Lorenc-Grabowska E, Gryglewicz G (2006) Adsorption characteristics of Congo red on coal-based mesoporous activated carbon. Dyes Pigments 74(1):34–40

    Article  Google Scholar 

  • Matos J, Laine J, Hermann J (1998) Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Appl Catal B Environ 18:281–291

    Article  CAS  Google Scholar 

  • Matos J, Laine J, Herrmann J (2001) Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradiated titania. J Catal 200(1):10–20

    Article  CAS  Google Scholar 

  • Matos J, Laine J, Herrmann J, Uzcategui D, Brito J (2007) Influence of activated carbon upon titania on aqueous photocatalytic consecutive runs of phenol photodegradation. Appl Catal B Environ 70(1):461–469

    Article  CAS  Google Scholar 

  • Matos J, Garcia A, Chovelon J, Ferronato C (2010a) Combination of adsorption on activated carbon and oxidative photocatalysis on TiO2 for gaseous toluene remediation. Open Mater Sci J 4:23–25

    CAS  Google Scholar 

  • Matos J, García-López E, Palmisano L, García A, Marcì G (2010b) Influence of activated carbon in TiO2 and ZnO mediated photo-assisted degradation of 2-propanol in gas-solid regime. Appl Catal B Environ 99(1–2):170–180

    Article  CAS  Google Scholar 

  • Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10(6):456–461

    Article  CAS  Google Scholar 

  • Pinheiro GK, Serpa RB, de Souza LV, Sartorelli ML, Reis FT, Rambo CR (2017) Increasing incident photon to current efficiency of perovskite solar cells through TiO2 aerogel-based nanostructured layers. Colloids Surf A Physicochem Eng Asp 527:89–94

    Article  CAS  Google Scholar 

  • Prestipino C, Regli L, Vitillo JG, Bonino F, Damin A, Lamberti C, Bordiga S (2006) Local structure of framework Cu(II) in HKUST-1 metallo-organic framework: spectroscopic characterization upon activation and interaction with adsorbates. Chem Mater 18(5):1337–1346. https://doi.org/10.1021/cm052191g

    Article  CAS  Google Scholar 

  • Ren H, Jia S, Zou J, Wu S, Han X (2015) A facile preparation of Ag2O/P25 photocatalyst for selective reduction of nitrate. Appl Catal B Environ 176–177:53–61. https://doi.org/10.1016/j.apcatb.2015.03.038

    Article  CAS  Google Scholar 

  • Rengaraj S, Li XZ (2007) Enhanced photocatalytic reduction reaction over Bi3+–TiO2 nanoparticles in presence of formic acid as a hole scavenger. Chemosphere 66(5):930–938. https://doi.org/10.1016/j.chemosphere.2006.06.007

    Article  CAS  Google Scholar 

  • Sá J, Agüera CA, Gross S, Anderson JA (2009) Photocatalytic nitrate reduction over metal modified TiO2. Appl Catal B Environ 85(3–4):192–200. https://doi.org/10.1016/j.apcatb.2008.07.014

    Article  CAS  Google Scholar 

  • Saeed M, Ilyas M, Siddique M, Ahmad A (2013) Oxidative degradation of oxalic acid in aqueous medium using manganese oxide as catalyst at ambient temperature and pressure. Arab J Sci Eng 38(7):1739–1748. https://doi.org/10.1007/s13369-013-0545-x

    Article  CAS  Google Scholar 

  • Shand M, Anderson JA (2013) Aqueous phase photocatalytic nitrate destruction using titania based materials: routes to enhanced performance and prospects for visible light activation. Catal Sci Technol 3(4):879–899

    Article  CAS  Google Scholar 

  • Shirley DA (1972) High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B 5(12):4709–4714

    Article  Google Scholar 

  • Sing KSW (1982) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 54:2201–2218

    Article  Google Scholar 

  • Suriyaraj S, Pillai MM, Bhattacharyya A, Selvakumar R (2015) Scavenging of nitrate ions from water using hybrid Al2O3/bio-TiO2 nanocomposite impregnated thermoplastic polyurethane nanofibrous membrane. RSC Adv 5(84):68420–68429

    Article  CAS  Google Scholar 

  • Torimoto T, Okawa Y, Takeda N, Yoneyama H (1997) Effect of activated carbon content in TiO2-loaded activated carbon on photodegradation behaviours of dichloromethane. J Photochem Photobiol A Chem 103(1–2):153–157

    Article  CAS  Google Scholar 

  • Tryba B (2008) Increase of the photocatalytic activity of TiO2 by carbon and iron modifications. Int J Photoenergy

  • Tryba B, Morawski AW, Inagaki M (2003) Application of TiO2-mounted activated carbon to the removal of phenol from water. Appl Catal B Environ 41(4):427–433

    Article  CAS  Google Scholar 

  • Vimonses V, Lei S, Jin B, Chow CWK, Saint C (2009) Kinetic study and equilibrium isotherm analysis of Congo red adsorption by clay materials. Chem Eng J 148(2–3):354–364

    Article  CAS  Google Scholar 

  • Wakida FT, Lerner DN (2005) Non-agricultural sources of groundwater nitrate: a review and case study. Water Res 39(1):3–16. https://doi.org/10.1016/j.watres.2004.07.026

    Article  CAS  Google Scholar 

  • Wang Z, Liu Y, Martin DJ, Wang W, Tang J, Huang W (2013) CuO x–TiO2 junction: what is the active component for photocatalytic H2 production. Phys Chem Chem Phys 15(36):14956–14960

    Article  CAS  Google Scholar 

  • Wei W, Yu C, Zhao Q, Qian X, Li G, Wan Y (2014) Synergy effect in photodegradation of contaminants from water using ordered mesoporous carbon-based titania catalyst. Appl Catal B Environ 146:151–161

    Article  CAS  Google Scholar 

  • Wu Z, Zhu H, Qin Z, Wang H, Huang L, Wang J (2010) Preferential oxidation of CO in H2-rich stream over CuO/Ce1−xTixO2 catalysts. Appl Catal B Environ 98(3–4):204–212. https://doi.org/10.1016/j.apcatb.2010.05.030

    Article  CAS  Google Scholar 

  • Wu G, Guan N, Li L (2011) Low temperature CO oxidation on Cu-Cu2O/TiO2 catalyst prepared by photodeposition. Catal Sci Technol 1(4):601–608. https://doi.org/10.1039/c1cy00036e

    Article  CAS  Google Scholar 

  • Yang R, Cai J, Lv K, Wu X, Wang W, Xu Z, Xu W (2017) Fabrication of TiO2 hollow microspheres assembly from nanosheets (TiO2-HMSs-NSs) with enhanced photoelectric conversion efficiency in DSSCs and photocatalytic activity. Appl Catal B Environ 210:184–193

    Article  CAS  Google Scholar 

  • Yu J, Yu JC, Leung MK, Ho W, Cheng B, Zhao X, Zhao J (2003) Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania. J Catal 217(1):69–78. https://doi.org/10.1016/S0021-9517(03)00034-4

    Article  CAS  Google Scholar 

  • Yu Y, Yu JC, Chan C, Che Y, Zhao J, Ding L, Wong P (2005) Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye. Appl Catal B Environ 61:1–2), 1-11. https://doi.org/10.1016/j.apcatb.2005.03.008

    Article  CAS  Google Scholar 

  • Zhu S, Liang S, Tong Y, An X, Long J, Fu X, Wang X (2015) Photocatalytic reduction of CO2 with H2O to CH4 on Cu(I) supported TiO2 nanosheets with defective {001} facets. Phys Chem Chem Phys 17(15):9761–9770. https://doi.org/10.1039/c5cp00647c

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Similarly, special thanks to Abubakar Tafawa Balewa University, Bauchi-Nigeria, for the award of fellowship to Haruna Adamu.

Funding

Financial provision was made available for this research work by Petroleum Technology Development Fund, Nigeria (PTDF), under the auspices of overseas scholarship scheme (OSS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruna Adamu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest

Additional information

Responsible editor: Suresh Pillai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamu, H., Shand, M., Taylor, R.S.F. et al. Use of carbon-based composites to enhance performance of TiO2 for the simultaneous removal of nitrates and organics from aqueous environments. Environ Sci Pollut Res 25, 32001–32014 (2018). https://doi.org/10.1007/s11356-018-3120-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3120-x

Keywords

Navigation