Skip to main content
Log in

Application of magnesium peroxide (MgO2) nanoparticles for toluene remediation from groundwater: batch and column studies

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the present study, magnesium peroxide (MgO2) nanoparticles were synthesized by electro-deposition process and characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The batch experiments were conducted to evaluate the MgO2 half-life (600 mg/L) in groundwater under various temperatures (4, 15, and 30 °C) and initial pH (3, 7, and 12). The effect of Fe2+ ions (enhanced oxidation) on the toluene remediation by MgO2 was also investigated. Nanoparticles were injected to sand-packed continuous-flow columns, and toluene removal (50 ppm) was studied within 50 days at 15 °C. The results indicated that the half-life of MgO2 at pH 3 and 12 were 5 and 15 days, respectively, in comparison to 10 days at the initial pH 7 and 15 °C. The nanoparticles showed 20 and 7.5 days half-life at 4 and 30 °C temperatures, respectively. Injection of Fe2+ ions indicated an impressive effect on toluene removal by MgO2, and the contaminant was completely removed after 5 and 10 days, in the batch and column experiments, respectively. Confocal laser scanning microscope (CLSM) analysis indicated that the attached biofilm had a significant role in the decontamination of groundwater. Comparison of bioremediation and enhanced oxidation resulted in a considerable insight into the application of magnesium peroxide in groundwater remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arvin E, Pedersen L-F (2015) Hydrogen peroxide decomposition kinetics in aquaculture water. Aquac Eng 64:1–7

    Article  Google Scholar 

  • Bass DH, Hastings NA, Brown RA (2000) Performance of air sparging systems: a review of case studies. J Hazard Mater 72:101–119

    Article  CAS  Google Scholar 

  • Basu S, Yadav BK, Mathur S (2015) Enhanced bioremediation of BTEX contaminated groundwater in pot-scale wetlands. Environ Sci Pollut Res 22:20041–20049

    Article  CAS  Google Scholar 

  • Borja J, Taleon DM, Auresenia J, Gallardo S (2005) Polychlorinated biphenyls and their biodegradation. Process Biochem 40:1999–2013

    Article  CAS  Google Scholar 

  • Bouchard D, Marchesi M, Madsen EL, DeRito CM, Thomson NR, Aravena R, Barker JF, Buscheck T, Kolhatkar R, Daniels EJ, Hunkeler D (2018) Diagnostic tools to assess mass removal processes during pulsed air sparging of a petroleum hydrocarbon source zone. Groundwater Monitoring & Remediation. https://doi.org/10.1111/gwmr.12297

  • Brunsting JH, McBean EA (2014) In situ treatment of arsenic-contaminated groundwater by air sparging. J Contam Hydrol 159:20–35

    Article  CAS  Google Scholar 

  • Büyüksönmez F, Hess TF, Crawford RL, Watts RJ (1998) Toxic effects of modified Fenton reactions on Xanthobacter flavus FB71. Appl Environ Microbiol 64:3759–3764

    Google Scholar 

  • Chang L-C, Chu H-J, Hsiao C-T (2007) Optimal planning of a dynamic pump-treat-inject groundwater remediation system. J Hydrol 342:295–304

    Article  Google Scholar 

  • Chao H-P, Hsieh L-HC, Tran HN (2018) Increase in volatilization of organic compounds using air sparging through addition in alcohol in a soil-water system. J Hazard Mater 344:942–949

    Article  CAS  Google Scholar 

  • Chen CH, Whang LM, Pan CL, Yang CL, Liu PWG (2017a) Immobilization of diesel-degrading consortia for bioremediation of diesel-contaminated groundwater and seawater. Int Biodet Biodeg 124:62–72

    Article  CAS  Google Scholar 

  • Chen T et al (2017b) Citrate addition increased phosphorus bioavailability and enhanced gasoline bioremediation. J Environ Qual 46:975–983

    Article  CAS  Google Scholar 

  • Chiu H, Verpoort F, Liu J, Chang Y, Kao C (2017) Using intrinsic bioremediation for petroleum–hydrocarbon contaminated groundwater cleanup and migration containment: Effectiveness and mechanism evaluation. J Taiwan Inst Chem Eng 72:53–61

    Article  CAS  Google Scholar 

  • Collins C, Laturnus F, Nepovim A (2002) Remediation of BTEX and trichloroethene. Environ Sci Pollut Res 9:86–94

    Article  CAS  Google Scholar 

  • Couto MNP, Monteiro E, Vasconcelos MTS (2010) Mesocosm trials of bioremediation of contaminated soil of a petroleum refinery: comparison of natural attenuation, biostimulation and bioaugmentation. Environ Sci Pollut Res 17:1339–1346

    Article  CAS  Google Scholar 

  • El-Naas MH, Acio JA, El Telib AE (2014) Aerobic biodegradation of BTEX: progresses and prospects. J Environ Chem Eng 2:1104–1122

    Article  CAS  Google Scholar 

  • Farhadian M, Vachelard C, Duchez D, Larroche C (2008) In situ bioremediation of monoaromatic pollutants in groundwater: a review. Bioresour Technol 99:5296–5308

    Article  CAS  Google Scholar 

  • Fischbacher A, von Sonntag C, Schmidt TC (2017) Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe (II) ratios. Chemosphere 182:738–744

    Article  CAS  Google Scholar 

  • Goi A, Viisimaa M, Trapido M, Munter R (2011) Polychlorinated biphenyls-containing electrical insulating oil contaminated soil treatment with calcium and magnesium peroxides. Chemosphere 82:1196–1201

    Article  CAS  Google Scholar 

  • Greer K, Molson J, Barker J, Thomson N, Donaldson C (2010) High-pressure injection of dissolved oxygen for hydrocarbon remediation in a fractured dolostone aquifer. J Contam Hydrol 118:13–26

    Article  CAS  Google Scholar 

  • Heron G, Parker K, Galligan J, Holmes TC (2009) Thermal treatment of eight CVOC source zones to near nondetect concentrations. Groundwater Monitoring & Remediation 29:56–65

    Article  CAS  Google Scholar 

  • Huang H-H, Lu M-C, Chen J-N (2001) Catalytic decomposition of hydrogen peroxide and 2-chlorophenol with iron oxides. Water Res 35:2291–2299

    Article  CAS  Google Scholar 

  • Imbernon R, Bazante-Yamaguishi R, Muchimbane A (2018) Applying ionizing radiation to metal speciation for the environmental assessment of underground aquifer associated with technogenic landfill containing sludge from a water treatment plant (WTP). J Bioremediat Biodegrad 9:2

    Google Scholar 

  • Isikhuemhen OS, Anoliefo GO, Oghale OI (2003) Bioremediation of crude oil polluted soil by the white rot fungus Pleurotus tuberregium (Fr) Sing. Environ Sci Pollut Res 10:108–112

    Article  CAS  Google Scholar 

  • Jaison J, Balakumar S, Chan Y (2015) Sol–Gel synthesis and characterization of magnesium peroxide nanoparticles. In: IOP Conference Series: Materials Science and Engineering. vol 1. IOP Publishing, p 012005

  • Jenkins KB, Michelsen DL, Novak JT (1993) Application of oxygen microbubbles for in situ biodegradation of p-xylene-contaminated groundwater in a soil column. Biotechnol Prog 9:394–400

    Article  CAS  Google Scholar 

  • Johnston C, Rayner J, Patterson B, Davis G (1998) Volatilisation and biodegradation during air sparging of dissolved BTEX-contaminated groundwater. J Contam Hydrol 33:377–404

    Article  CAS  Google Scholar 

  • Jung YS, Lim WT, Park JY, Kim YH (2009) Effect of pH on Fenton and Fenton-like oxidation. Environ Technol 30:183–190

    Article  CAS  Google Scholar 

  • Kao C, Borden R (1994) Enhanced aerobic bioremediation of a gasoline-contaminated aquifer by oxygen-releasing barriers Hydrocarbon bioremediation. Lewis Publishers, Boca Raton, pp 262–266

    Google Scholar 

  • Khodaveisi J, Banejad H, Afkhami A, Olyaie E, Lashgari S, Dashti R (2011) Synthesis of calcium peroxide nanoparticles as an innovative reagent for in situ chemical oxidation. J Hazard Mater 192:1437–1440

    Article  CAS  Google Scholar 

  • Lin T-C, Shen F-T, Chang J-S, Young C-C, Arun A, Lin S-Y, Chen T-L (2009) Hydrocarbon degrading potential of bacteria isolated from oil-contaminated soil. J Taiwan Inst Chem Eng 40:580–582

    Article  CAS  Google Scholar 

  • Liu S, Yang Q, Yang Y, Ding H, Qi Y (2017a) In situ remediation of tetrachloroethylene and its intermediates in groundwater using an anaerobic/aerobic permeable reactive barrier. Environ Sci Pollut Res 24:26615–26622

    Article  CAS  Google Scholar 

  • Liu X, Yuan S, Tong M, Liu D (2017b) Oxidation of trichloroethylene by the hydroxyl radicals produced from oxygenation of reduced nontronite. Water Res 113:72–79

    Article  CAS  Google Scholar 

  • Lu S, Zhang X, Xue Y (2017) Application of calcium peroxide in water and soil treatment: a review. J Hazard Mater 337:163–177

    Article  CAS  Google Scholar 

  • Madan SS, Wasewar KL, Kumar CR (2016) Adsorption kinetics, thermodynamics, and equilibrium of α-toluic acid onto calcium peroxide nanoparticles. Adv Powder Technol 27:2112–2120

    Article  CAS  Google Scholar 

  • McGregor R (2018) In situ treatment of PFAS-impacted groundwater using colloidal activated. Carbon Remediation Journal 28:33–41

    Article  Google Scholar 

  • Mosmeri H, Alaie E, Shavandi M, Dastgheib SMM, Tasharrofi S (2017a) Benzene-contaminated groundwater remediation using calcium peroxide nanoparticles: synthesis and process optimization. Environ Monit Assess 189:452

    Article  CAS  Google Scholar 

  • Mosmeri H, Alaie E, Shavandi M, Dastgheib SMM, Tasharrofi S (2017b) Bioremediation of benzene from groundwater by calcium peroxide (CaO 2) nanoparticles encapsulated in sodium alginate. J Taiwan Inst Chem Eng 78:299–306

    Article  CAS  Google Scholar 

  • Mosmeri H, Tasharrofi S, Alaie E, Hassani SS (2018) Controlled-release oxygen nanocomposite for bioremediation of benzene contaminated groundwater. In: New Polymer Nanocomposites for Environmental Remediation. Elsevier, pp 601–622

  • Mukherjee AK, Bordoloi NK (2012) Biodegradation of benzene, toluene, and xylene (BTX) in liquid culture and in soil by Bacillus subtilis and Pseudomonas aeruginosa strains and a formulated bacterial consortium. Environ Sci Pollut Res 19:3380–3388

    Article  CAS  Google Scholar 

  • Northup A, Cassidy D (2008) Calcium peroxide (CaO 2) for use in modified Fenton chemistry. J Hazard Mater 152:1164–1170

    Article  CAS  Google Scholar 

  • Obrador A, Rico M, Alvarez J, Novillo J (2001) Influence of thermal treatment on sequential extraction and leaching behaviour of trace metals in a contaminated sewage sludge. Bioresour Technol 76:259–264

    Article  CAS  Google Scholar 

  • Odencrantz JE, Johnson JG, Koenigsberg SS (1996) Enhanced intrinsic bioremediation of hydrocarbons using an oxygen-releasing compound. Remediat J 6:99–114

    Article  Google Scholar 

  • Patterson A (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978

    Article  CAS  Google Scholar 

  • Pleasant S, O'Donnell A, Powell J, Jain P, Townsend T (2014) Evaluation of air sparging and vadose zone aeration for remediation of iron and manganese-impacted groundwater at a closed municipal landfill. Sci Total Environ 485:31–40

    Article  CAS  Google Scholar 

  • Qian Y, Zhang J, Zhang Y, Chen J, Zhou X (2016) Degradation of 2, 4-dichlorophenol by nanoscale calcium peroxide: implication for groundwater remediation. Sep Purif Technol 166:222–229

    Article  CAS  Google Scholar 

  • Qian Y, Zhou X, Zhang Y, Zhang W, Chen J (2013) Performance and properties of nanoscale calcium peroxide for toluene removal. Chemosphere 91:717–723

    Article  CAS  Google Scholar 

  • Rabideau AJ, Blayden JM, Ganguly C (1999) Field performance of air-sparging system for removing TCE from groundwater. Environ Sci Technol 33:157–162

    Article  CAS  Google Scholar 

  • Roy J, Grapentine L, Bickerton G (2017) Ecological effects from groundwater contaminated by volatile organic compounds on an urban stream’s benthic ecosystem. Limnologica-Ecology and Management of Inland Waters 68:115–129

    Article  CAS  Google Scholar 

  • Runci F, Bonchi C, Frangipani E, Visaggio D, Visca P (2017) Acinetobacter baumannii biofilm formation in Human serum and disruption by gallium. Antimicrob Agents Chemother 61:e01563–e01516

    Article  CAS  Google Scholar 

  • Sirguey C, e Silva PTDS, Schwartz C, Simonnot M-O (2008) Impact of chemical oxidation on soil quality. Chemosphere 72:282–289

    Article  CAS  Google Scholar 

  • Sivakumar D, Nouri J, Modhini T, Deepalakshmi K (2018) Nickel removal from electroplating industry wastewater: a bamboo activated carbon. Global J Environ Sci Manage 4:325–338

    Google Scholar 

  • Smith AE, Hristova K, Wood I, Mackay DM, Lory E, Lorenzana D, Scow KM (2005) Comparison of biostimulation versus bioaugmentation with bacterial strain PM1 for treatment of groundwater contaminated with methyl tertiary butyl ether (MTBE). Environ Health Perspect 113:317

    Article  CAS  Google Scholar 

  • Su W-T, Wu B-S, Chen W-J (2011) Characterization and biodegradation of motor oil by indigenous Pseudomonas aeruginosa and optimizing medium constituents. J Taiwan Inst Chem Eng 42:689–695

    Article  CAS  Google Scholar 

  • Taniguchi M (1993) Evaluation of vertical groundwater fluxes and thermal properties of aquifers based on transient temperature-depth profiles. Water Resour Res 29:2021–2026

    Article  Google Scholar 

  • Taylor CA, Stefan HG (2009) Shallow groundwater temperature response to climate change and urbanization. J Hydrol 375:601–612

    Article  CAS  Google Scholar 

  • Wang H, Zhao Y, Li T, Chen Z, Wang Y, Qin C (2016) Properties of calcium peroxide for release of hydrogen peroxide and oxygen: a kinetics study. Chem Eng J 303:450–457

    Article  CAS  Google Scholar 

  • Watts RJ, Teel AL (2006) Treatment of contaminated soils and groundwater using ISCO. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 10:2–9

    Article  CAS  Google Scholar 

  • Xia D, Yin R, Sun J, An T, Li G, Wang W, Zhao H, Wong PK (2017) Natural magnetic pyrrhotite as a high-efficient persulfate activator for micropollutants degradation: radicals identification and toxicity evaluation. J Hazard Mater 340:435–444

    Article  CAS  Google Scholar 

  • Xue Y et al (2016) The destruction of benzene by calcium peroxide activated with Fe (II) in water. Chem Eng J 302:187–193

    Article  CAS  Google Scholar 

  • Yeh CK, Novak JT (1995) The effect of hydrogen peroxide on the degradation of methyl and ethyl tert-butyl ether in soils. Water Environ Res 67:828–834

    Article  CAS  Google Scholar 

  • Yin R, Fan C, Sun J, Shang C (2018) Oxidation of iron sulfide and surface-bound iron to regenerate granular ferric hydroxide for in-situ hydrogen sulfide control by persulfate, chlorine and peroxide. Chem Eng J 336:587–594

    Article  CAS  Google Scholar 

  • Zaribafan A, Baharlouie Yancheshmeh M, Fathi T, Ahmadkhani R, Haghbeen K (2017) Advanced oxidation processes against alkyl phenols in groundwater samples. Caspian Journal of Environmental Sciences 15:345–357

    Google Scholar 

  • Zeng Q, Dong H, Wang X, Yu T, Cui W (2017) Degradation of 1, 4-dioxane by hydroxyl radicals produced from clay minerals. J Hazard Mater 331:88–98

    Article  CAS  Google Scholar 

  • Zhang S, Mao G, Crittenden J, Liu X, Du H (2017a) Groundwater remediation from the past to the future: a bibliometric analysis. Water Res 119:114–125

    Article  CAS  Google Scholar 

  • Zhang X et al (2017b) Application of ascorbic acid to enhance trichloroethene degradation by Fe (III)-activated calcium peroxide. Chem Eng J 325:188–198

    Article  CAS  Google Scholar 

  • Zhang X et al (2015) Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion. J Hazard Mater 284:253–260. https://doi.org/10.1016/j.jhazmat.2014.11.030

    Article  CAS  Google Scholar 

  • Zhang X et al (2016) Application of calcium peroxide activated with Fe (II)-EDDS complex in trichloroethylene degradation. Chemosphere 160:1–6

    Article  CAS  Google Scholar 

  • Zhao C et al (2014) Bioremediation of endosulfan in laboratory-scale constructed wetlands: effect of bioaugmentation and biostimulation. Environ Sci Pollut Res 21:12827–12835

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are also grateful to Mr. Vahid Samimi and Ms. Azam Falsafi for performing the HPLC analysis.

Funding

This work was financially supported by a research grant from National Iranian Oil Company (NIOC) Directorate of Research and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Shavandi.

Additional information

Responsible editor: Bingcai Pan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosmeri, H., Gholami, F., Shavandi, M. et al. Application of magnesium peroxide (MgO2) nanoparticles for toluene remediation from groundwater: batch and column studies. Environ Sci Pollut Res 25, 31051–31061 (2018). https://doi.org/10.1007/s11356-018-2920-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2920-3

Keywords

Navigation