Skip to main content

Advertisement

Log in

CaO-based sorbent derived from lime mud and bauxite tailings for cyclic CO2 capture

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Using aluminum nitrate (AlN) and bauxite tailings (BTs) as different dopants, and lime mud (LM) as calcium source, a series of CaO-based sorbents were prepared for CO2 capture by dry mixing method; then, the carbonation conversions of multiple carbonation/calcination cycles were detected in a thermogravimetric analyzer (TGA). Effects of different dopants, dopant contents, precalcination conditions, and a long series of cycles on CO2 absorption properties were scrutinized, and the phase composition and morphologies were tested by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Durability studies show that the sample doped with AlN remains a higher absorption conversion (30.88%) after 30 carbonation/calcination cycles. In the meantime, the sorbent doped with BTs showed a lower conversion, which is probably resulted from the impurities from waste BTs. However, the sample BT has a better cyclic absorption stability. In addition, the incorporation of BTs, as a kind of solid waste, not only decreases the preparation cost but also is good for environment. The occurrence of Ca12Al14O33 phase is considered to provide a stable framework inhibiting inactivation of CaO, and improve the CO2 adsorption stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Al-Maythalony BA, Shekhah O, Swaidan R, Belmabkhout Y, Pinnau I, Eddaoudi M (2015) Quest for anionic MOF membranes: continuous sod-ZMOF membrane with CO2 adsorption-driven selectivity. J Am Chem Soc 137(5):1754–1757

    Article  CAS  Google Scholar 

  • Anbia M, Hoseini V (2012) Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide. Chem Eng J 191:326–330

    Article  CAS  Google Scholar 

  • Belaissaoui B, Willson D, Favre E (2012) Membrane gas separations and post-combustion carbon dioxide capture: parametric sensitivity and process integration strategies. Chem Eng J 211-212:122–132

    Article  CAS  Google Scholar 

  • Borgwardt RH (1989) Calcium oxide sintering in atmospheres containing water and carbon dioxide. Ind Eng Chem Res 28(4):493–500

    Article  CAS  Google Scholar 

  • Broda M, Müller CR (2012) Synthesis of highly efficient, ca-based, Al2O3-stabilized, carbon gel-templated CO2 sorbents. Adv Mater 24(22):3059–3064

    Article  CAS  Google Scholar 

  • Chen Z, Song HS, Portillo M, Lim CJ, Grace JR, Anthony EJ (2009) Long-term calcination/carbonation cycling and thermal pretreatment for CO2 capture by limestone and dolomite. Energy Fuel 23(3):1437–1444

    Article  CAS  Google Scholar 

  • Chen H, Zhao C, Yu W (2013) Calcium-based sorbent doped with attapulgite for CO2 capture. Appl Energy 112:67–74

    Article  CAS  Google Scholar 

  • Chen H, Wang F, Zhao C, Khalili N (2017) The effect of fly ash on reactivity of calcium based sorbents for CO2 capture. Chem Eng J 309:725–737

    Article  CAS  Google Scholar 

  • Chu F, Jon C, Yang L, Du X, Yang Y (2016) CO2 absorption characteristics in Ammonia solution inside the structured packed column. Ind Eng Chem Res 55(12):3696–3709

    Article  CAS  Google Scholar 

  • Derevschikov VS, Lysikov AI, Okunev AG (2011) High temperature CaO/Y2O3 carbon dioxide absorbent with enhanced stability for sorption-enhanced reforming applications. Ind Eng Chem Res 50(22):12741–12749

    Article  CAS  Google Scholar 

  • Donat F, Florin NH, Anthony EJ, Fennell PS (2012) Influence of high-temperature steam on the reactivity of CaO sorbent for CO2 capture. Environ Sci Technol 46(2):1262–1269

    Article  CAS  Google Scholar 

  • He S, Hu Y, Hu T, Ma A, Jia Q, Su H, Shan S (2017) Investigation of CaO-based sorbents derived from eggshells and red mud for CO2 capture. J Alloys Compd 701:828–833

    Article  CAS  Google Scholar 

  • Hu Y, Jia Q, Shan S, Li S, Jiang L, Wang Y (2015a) Development of CaO-based sorbent doped with mineral rejects–bauxite-tailings in cyclic CO2 capture. J Taiwan Inst Chem Eng 46:155–159

    Article  CAS  Google Scholar 

  • Hu Y, Liu W, Sun J, Li M, Yang X, Zhang Y, Xu M (2015b) Incorporation of CaO into novel Nd2O3 inert solid support for high temperature CO2 capture. Chem Eng J 273:333–343

    Article  CAS  Google Scholar 

  • Koirala R, Reddy GK, Smirniotis PG (2012) Single nozzle flame-made highly durable metal doped ca-based sorbents for CO2 capture at high temperature. Energy Fuel 26(5):3103–3109

    Article  CAS  Google Scholar 

  • Li L, King DL, Nie Z, Howard C (2009a) Magnesia-stabilized calcium oxide absorbents with improved durability for high temperature CO2 capture. Ind Eng Chem Res 48(23):10604–10613

    Article  CAS  Google Scholar 

  • Li Y, Zhao C, Chen H, Liang C, Duan L, Zhou W (2009b) Modified CaO-based sorbent looping cycle for CO2 mitigation. Fuel 88(4):697–704

    Article  CAS  Google Scholar 

  • Li Y, Zhao C, Ren Q, Duan L, Chen H, Chen X (2009c) Effect of rice husk ash addition on CO2 capture behavior of calcium-based sorbent during calcium looping cycle. Fuel Process Technol 90(6):825–834

    Article  CAS  Google Scholar 

  • Liu CT, Li YJ, Sun RY, Xie X (2012) Development of CaO-based sorbent doped with framework materials for CO2 capture. Adv Mater Res 518-523:715–719

    Article  CAS  Google Scholar 

  • Luo C, Zheng Y, Ding N, Zheng C (2011) Enhanced cyclic stability of CO2 adsorption capacity of CaO-based sorbents using La2O3 or Ca12Al14O33 as additives. Korean J Chem Eng 28(4):1042–1046

    Article  CAS  Google Scholar 

  • Ma X, Li Y, Chi C, Zhang W, Shi J, Duan L (2017) CO2 capture performance of mesoporous synthetic sorbent fabricated using carbide slag under realistic calcium looping conditions. Energy Fuel 31(7):7299–7308

    Article  CAS  Google Scholar 

  • Manovic V, Anthony EJ (2009) Screening of binders for pelletization of CaO-based sorbents for CO2 capture. Energy Fuel 23(10):4797–4804

    Article  CAS  Google Scholar 

  • Manovic V, Anthony EJ (2010) Carbonation of CaO-based sorbents enhanced by steam addition. Ind Eng Chem Res 49(19):9105–9110

    Article  CAS  Google Scholar 

  • Martavaltzi CS, Lemonidou AA (2008) Parametric study of the CaO− Ca12Al14O33 synthesis with respect to high CO2 sorption capacity and stability on multicycle operation. Ind Eng Chem Res 47(23):9537–9543

    Article  CAS  Google Scholar 

  • Mason JA, McDonald TM, Bae T-H, Bachman JE, Sumida K, Dutton JJ, Kaye SS, Long JR (2015) Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O. J Am Chem Soc 137(14):4787–4803

    Article  CAS  Google Scholar 

  • Pacciani R, Müller C, Davidson J, Dennis J, Hayhurst A (2008) Synthetic ca-based solid sorbents suitable for capturing CO2 in a fluidized bed. Can J Chem Eng 86(3):356–366

    Article  CAS  Google Scholar 

  • Peng W, Xu Z, Zhao H (2016) Batch fluidized bed test of SATS-derived CaO/TiO2–Al2O3 sorbent for calcium looping. Fuel 170:226–234

    Article  CAS  Google Scholar 

  • Qin C, Yin J, An H, Liu W, Feng B (2012) Performance of extruded particles from calcium hydroxide and cement for CO2 capture. Energy Fuel 26(1):154–161

    Article  CAS  Google Scholar 

  • Radfarnia HR, Sayari A (2015) A highly efficient CaO-based CO2 sorbent prepared by a citrate-assisted sol–gel technique. Chem Eng J 262:913–920

    Article  CAS  Google Scholar 

  • Ramkumar S, Fan L-S (2010) Calcium looping process (CLP) for enhanced noncatalytic hydrogen production with integrated carbon dioxide capture. Energy Fuel 24(8):4408–4418

    Article  CAS  Google Scholar 

  • Ridha FN, Manovic V, Macchi A, Anthony EJ (2012) High-temperature CO2 capture cycles for CaO-based pellets with kaolin-based binders. Int J Greenhouse Gas Control 6:164–170

    Article  CAS  Google Scholar 

  • Salman M, Cizer Ö, Pontikes Y, Santos RM, Snellings R, Vandewalle L, Blanpain B, Van Balen K (2014) Effect of accelerated carbonation on AOD stainless steel slag for its valorisation as a CO2-sequestering construction material. Chem Eng J 246:39–52

    Article  CAS  Google Scholar 

  • Shan S, Ma A, Hu Y, Jia Q, Wang Y, Peng J (2016) Development of sintering-resistant CaO-based sorbent derived from eggshells and bauxite tailings for cyclic CO2 capture. Environ Pollut 208(Pt B):546–552

    Article  CAS  Google Scholar 

  • Stendardo S, Felice LD, Gallucci K, Foscolo PU (2011) CO2 capture with calcined dolomite: the effect of sorbent particle size. Biomass Conv Bioref 1:149–161

    Article  CAS  Google Scholar 

  • Stendardo S, Andersen LK, Herce C (2013) Self-activation and effect of regeneration conditions in CO2–carbonate looping with CaO–Ca12Al14O33 sorbent. Chem Eng J 220:383–394

    Article  CAS  Google Scholar 

  • Sun R, Li Y, Wu S, Liu C, Liu H, Lu C (2013) Enhancement of CO2 capture capacity by modifying limestone with propionic acid. Powder Technol 233:8–14

    Article  CAS  Google Scholar 

  • Sun J, Liu W, Hu Y, Wu J, Li M, Yang X, Wang W, Xu M (2016) Enhanced performance of extruded–spheronized carbide slag pellets for high temperature CO2 capture. Chem Eng J 285:293–303

    Article  CAS  Google Scholar 

  • Wang K, Guo X, Zhao P, Zheng C (2010) Cyclic CO2 capture of CaO-based sorbent in the presence of metakaolin and aluminum (hydr)oxides. Appl Clay Sci 50(1):41–46

    Article  CAS  Google Scholar 

  • Witoon T, Mungcharoen T, Limtrakul J (2014) Biotemplated synthesis of highly stable calcium-based sorbents for CO2 capture via a precipitation method. Appl Energy 118:32–40

    Article  CAS  Google Scholar 

  • Wu SF, Li QH, Kim JN, Yi KB (2008) Properties of a nano CaO/Al2O3 CO2 sorbent. Ind Eng Chem Res 47(1):180–184

    Article  CAS  Google Scholar 

  • Yan F, Jiang J, Li K, Tian S, Liu Z, Shi J, Chen X, Fei J, Lu Y (2016) Cyclic performance of waste-derived SiO2 stabilized, CaO-based sorbents for fast CO2 capture. ACS Sustain Chem Eng 4(12):7004–7012

    Article  CAS  Google Scholar 

  • Zhang M, Guo Y (2013) Process simulations of large-scale CO2 capture in coal-fired power plants using aqueous ammonia solution. Int J Greenhouse Gas Control 16:61–71

    Article  CAS  Google Scholar 

  • Zhang X, Li Z, Peng Y, Su W, Sun X, Li J (2014) Investigation on a novel CaO–Y2O3 sorbent for efficient CO2 mitigation. Chem Eng J 243:297–304

    Article  CAS  Google Scholar 

  • Zhao M, Bilton M, Brown AP, Cunliffe AM, Dvininov E, Dupont V, Comyn TP, Milne SJ (2014) Durability of CaO–CaZrO3 sorbents for high-temperature CO2 capture prepared by a wet chemical method. Energy Fuel 28(2):1275–1283

    Article  CAS  Google Scholar 

Download references

Funding

This work has been sponsored by National Natural Science Foundations of China (21766016, 21566014, and 51364023) and the Yunnan Talent Reserve Project (2015HB014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingming Jia or Shaoyun Shan.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., He, L., Ma, A. et al. CaO-based sorbent derived from lime mud and bauxite tailings for cyclic CO2 capture. Environ Sci Pollut Res 25, 28015–28024 (2018). https://doi.org/10.1007/s11356-018-2825-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2825-1

Keywords

Navigation