Skip to main content

Advertisement

Log in

Arsenic biosorption using pretreated biomass of psychrotolerant Yersinia sp. strain SOM-12D3 isolated from Svalbard, Arctic

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A Gram-negative, arsenite-resistant psychrotolerant bacterial strain, Yersinia sp. strain SOM-12D3, was isolated from a biofilm sample collected from a lake at Svalbard in the Arctic area. To our knowledge, this is the first study on the ability of acid-treated and untreated, non-living biomass of strain SOM-12D3 to absorb arsenic. We conducted batch experiments at pH 7, with an initial As(III) concentration of 6.5 ppm, at 30 °C with 80 min of contact time. The Langmuir isotherm model fitted the equilibrium data better than Freundlich, and the sorption kinetics of As(III) biosorption followed the pseudo-second-order rate equation well for both types of non-living biomass. The highest biosorption capacity of the acid-treated biomass obtained by the Langmuir model was 159 mg/g. Further, a high recovery efficiency of 96% for As(III) was achieved using 0.1 M HCl within four cycles, which indicated high adsorption/desorption. Fourier transformed infrared (FTIR) demonstrated the involvement of hydroxyl, amide, and amine groups in As(III) biosorption. Field emission scanning electron microscopy–energy dispersive analysis (FESEM-EDAX) indicated the different morphological changes occurring in the cell after acid treatment and arsenic biosorption. Our results highlight the potential of using acid-treated non-living biomass of the psychrotolerant bacterium, Yersinia sp. Strain SOM-12D3 as a new biosorbent to remove As(III) from contaminated waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahalya N, Ramachandra T, Kanamadi R (2003) Biosorption of heavy metals. Res J Chem Environ 7:71–79

    CAS  Google Scholar 

  • Akar T, Tunali S, Çabuk A (2007) Study on the characterization of lead (II) biosorption by fungus Aspergillus parasiticus. Appl Biochem Biotechnol 136:389–405

    Article  CAS  Google Scholar 

  • Aksu Z, Sag Y, Kutsal T (1992) The biosorpnon of copperod by C. vulgaris and Z. ramigera. Environ Technol 13:579–586

    Article  CAS  Google Scholar 

  • Arıca MY, Tüzün İ, Yalçın E, İnce Ö, Bayramoğlu G (2005) Utilisation of native, heat and acid-treated microalgae Chlamydomonas reinhardtii preparations for biosorption of Cr (VI) ions. Process Biochem 40:2351–2358

    Article  CAS  Google Scholar 

  • Aryal M, Ziagova M, Liakopoulou-Kyriakides M (2010) Study on arsenic biosorption using Fe (III)-treated biomass of Staphylococcus xylosus. Chem Eng J 162:178–185

    Article  CAS  Google Scholar 

  • Balaji T, Yokoyama T, Matsunaga H (2005) Adsorption and removal of As (V) and As (III) using Zr-loaded lysine diacetic acid chelating resin. Chemosphere 59:1169–1174

    Article  CAS  Google Scholar 

  • Boddu VM, Abburi K, Talbott JL, Smith ED, Haasch R (2008) Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent. Water Res 42:633–642

    Article  CAS  Google Scholar 

  • Chowdhury MRI, Mulligan CN (2011) Biosorption of arsenic from contaminated water by anaerobic biomass. J Hazard Mater 190:486–492

    Article  CAS  Google Scholar 

  • Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 146:270–277

    Article  CAS  Google Scholar 

  • Cummings DE, Caccavo F, Fendorf S, Rosenzweig RF (1999) Arsenic mobilization by the dissimilatory Fe (III)-reducing bacterium Shewanella alga BrY. Environ Sci Technol 33:723–729

    Article  CAS  Google Scholar 

  • Escudero C, Fiol N, Villaescusa I, Bollinger J-C (2009) Arsenic removal by a waste metal (hydr) oxide entrapped into calcium alginate beads. J Hazard Mater 164:533–541

    Article  CAS  Google Scholar 

  • Freundlich H (1907) Ueber die adsorption in loesungen. Z Phys Chem 57:385–470

    CAS  Google Scholar 

  • Gadd GM, de Rome L (1988) Biosorption of copper by fungal melanin. Appl Microbiol Biotechnol 29:610–617

    Article  CAS  Google Scholar 

  • Galun M, Galun E, Siegel B, Keller P, Lehr H, Siegel S (1987) Removal of metal ions from aqueous solutions by Penicillium biomass: kinetic and uptake parameters. Water Air Soil Pollut 33:359–371

    Article  CAS  Google Scholar 

  • Ghimire KN, Inoue K, Makino K, Miyajima T (2002) Adsorptive removal of arsenic using orange juice residue. Sep Sci Technol 37:2785–2799

    Article  CAS  Google Scholar 

  • Giri A, Patel R, Mahapatra S, Mishra P (2013) Biosorption of arsenic (III) from aqueous solution by living cells of Bacillus cereus. Environ Sci Pollut Res 20:1281–1291

    Article  CAS  Google Scholar 

  • Griffiths C, Klemick H, Massey M, Moore C, Newbold S, Simpson D, Walsh P, Wheeler W (2012) US Environmental Protection Agency valuation of surface water quality improvements. Rev Environ Econ Policy 6:130–146

    Article  Google Scholar 

  • Halebian S, Harris B, Finegold S, Rolfe R (1981) Rapid method that aids in distinguishing gram-positive from gram-negative anaerobic bacteria. J Clin Microbiol 13:444–448

    CAS  Google Scholar 

  • Henke K (2009) Arsenic: environmental chemistry, health threats and waste treatment. John Wiley & Sons

  • Hlihor RM, Figueiredo H, Tavares T, Gavrilescu M (2017) Biosorption potential of dead and living Arthrobacter viscosus biomass in the removal of Cr (VI): batch and column studies. Process Saf Environ Prot 108:44–56

    Article  CAS  Google Scholar 

  • Huang H, Wu K, Khan A, Jiang Y, Ling Z, Liu P, Chen Y, Tao X, Li X (2016) A novel Pseudomonas gessardii strain LZ-E simultaneously degrades naphthalene and reduces hexavalent chromium. Bioresour Technol 207:370–378

    Article  CAS  Google Scholar 

  • Kapoor A, Viraraghavan T (1998) Biosorption of heavy metals on Aspergillus niger: effect of pretreatment. Bioresour Technol 63:109–113

    Article  CAS  Google Scholar 

  • Kowalski K (2014) Advanced arsenic removal technologies review. In: Chemistry of Advanced Environmental Purification Processes of Water. Elsevier, pp 258–337

  • Kumar U, Bandyopadhyay M (2006) Fixed bed column study for Cd (II) removal from wastewater using treated rice husk. J Hazard Mater 129:253–259

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Long J, Li H, Jiang D, Luo D, Chen Y, Xia J, Chen D (2017) Biosorption of strontium (II) from aqueous solutions by Bacillus cereus isolated from strontium hyperaccumulator Andropogon gayanus. Process Saf Environ Prot 111:23–30

    Article  CAS  Google Scholar 

  • Meena AK, Mishra GK, Rai PK, Rajagopal C, Nagar PN (2005) Removal of heavy metals ions from aqueous solution using carbon aerogel as an adsorbent. J Hazard Mater 122:161–170

    Article  CAS  Google Scholar 

  • Miyatake M, Hayashi S (2009) Characteristics of arsenic removal from aqueous solution by Bacillus megaterium strain UM-123. Environ Biotechnol 9:123–129

    Google Scholar 

  • Miyatake M, Hayashi S (2011) Characteristics of arsenic removal by Bacillus cereus strain W2. Resour Process 58:101–107

    Article  Google Scholar 

  • Mohd Bahari Z, Altowayti WAH, Ibrahim Z, Jaafar J, Shahir S (2013) Biosorption of As (III) by non-living biomass of an arsenic-hypertolerant Bacillus cereus strain SZ2 isolated from a gold mining environment: equilibrium and kinetic study. Appl Biochem Biotechnol 171:2247–2261

    Article  CAS  Google Scholar 

  • Mondal P, Majumder C, Mohanty B (2008) Growth of three bacteria in arsenic solution and their application for arsenic removal from wastewater. J Basic Microbiol 48:521–525

    Article  CAS  Google Scholar 

  • Ngah WW, Kamari A, Koay Y (2004) Equilibrium and kinetics studies of adsorption of copper (II) on chitosan and chitosan/PVA beads. Int J Biol Macromol 34:155–161

    Article  CAS  Google Scholar 

  • Paduraru C, Tofan L, Teodosiu C, Bunia I, Tudorachi N, Toma O (2015) Biosorption of zinc (II) on rapeseed waste: equilibrium studies and thermogravimetric investigations. Process Saf Environ Prot 94:18–28

    Article  CAS  Google Scholar 

  • Prasad KS, Ramanathan A, Paul J, Subramanian V, Prasad R (2013) Biosorption of arsenite (As+ 3) and arsenate (As+ 5) from aqueous solution by Arthrobacter sp. biomass. Environ Technol 34:2701–2708

    Article  CAS  Google Scholar 

  • Prasad KS, Srivastava P, Subramanian V, Paul J (2011) Biosorption of As (III) ion on Rhodococcus sp. WB-12: biomass characterization and kinetic studies. Sep Sci Technol 46:2517–2525

    Article  CAS  Google Scholar 

  • Rajarathnam S, Shashirekha MNJ, Bano Z (1998) Biodegradative and biosynthetic capacities of mushrooms: present and future strategies. Crit Rev Biotechnol 18:91–236

    Article  CAS  Google Scholar 

  • Reed BE, Vaughan R, Jiang L (2000) As (III), As (V), Hg, and Pb removal by Fe-oxide impregnated activated carbon. J Environ Eng 126:869–873

    Article  CAS  Google Scholar 

  • Rose NL, Rose C, Boyle JF, Appleby P (2004) Lake-sediment evidence for local and remote sources of atmospherically deposited pollutants on Svalbard. J Paleolimnol 31:499–513

    Article  Google Scholar 

  • Sabry S, Ghozlan H, Abou-Zeid DM (1997) Metal tolerance and antibiotic resistance patterns of a bacterial population isolated from sea water. J Appl Microbiol 82:245–252

    Article  CAS  Google Scholar 

  • Sarı A, Tuzen M (2009) Biosorption of As (III) and As (V) from aqueous solution by macrofungus (Inonotus hispidus) biomass: equilibrium and kinetic studies. J Hazard Mater 164:1372–1378

    Article  CAS  Google Scholar 

  • Sarı A, Tuzen M (2010) Biosorption of As (III) and As (V) from aqueous solution by lichen (Xanthoria parietina) biomass. Sep Sci Technol 45:463–471

    Article  CAS  Google Scholar 

  • Say R, Yılmaz N, Denizli A (2003) Biosorption of cadmium, lead, mercury, and arsenic ions by the fungus Penicillium purpurogenum. Sep Sci Technol 38:2039–2053

    Article  CAS  Google Scholar 

  • Tunali S, Cabuk A, Akar T (2006) Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem Eng J 115:203–211

    Article  CAS  Google Scholar 

  • Tuzen M, Sarı A, Mendil D, Uluozlu OD, Soylak M, Dogan M (2009) Characterization of biosorption process of As (III) on green algae Ulothrix cylindricum. J Hazard Mater 165:566–572

    Article  CAS  Google Scholar 

  • Vullo DL, Ceretti HM, Daniel MA, Ramírez SA, Zalts A (2008) Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E. Bioresour Technol 99:5574–5581

    Article  CAS  Google Scholar 

  • Wagemann R, Innes S, Richard P (1996) Overview and regional and temporal differences of heavy metals in Arctic whales and ringed seals in the Canadian Arctic. Sci Total Environ 186:41–66

    Article  CAS  Google Scholar 

  • Wang X-H, Song RH, Teng SX, Gao MM, Ni JY, Liu FF, Wang SG, Gao BY (2010) Characteristics and mechanisms of Cu (II) biosorption by disintegrated aerobic granules. J Hazard Mater 179:431–437

    Article  CAS  Google Scholar 

  • Wei G, Fan L, Zhu W, Fu Y, Yu J, Tang M (2009) Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China. J Hazard Mater 162:50–56

    Article  CAS  Google Scholar 

  • Wu Y, Feng S, Li B, Mi X (2010) The characteristics of Escherichia coli adsorption of arsenic (III) from aqueous solution. World J Microbiol Biotechnol 26:249–256

    Article  CAS  Google Scholar 

  • Yahya SK, Zakaria ZA, Samin J, Raj AS, Ahmad WA (2012) Isotherm kinetics of Cr (III) removal by non-viable cells of Acinetobacter haemolyticus. Colloids Surf B: Biointerfaces 94:362–368

    Article  CAS  Google Scholar 

  • Ziagova M, Dimitriadis G, Aslanidou D, Papaioannou X, Tzannetaki EL, Liakopoulou-Kyriakides M (2007) Comparative study of Cd (II) and Cr (VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresour Technol 98:2859–2865

    Article  CAS  Google Scholar 

  • Zulfadhly Z, Mashitah M, Bhatia S (2001) Heavy metals removal in fixed-bed column by the macro fungus Pycnoporus sanguineus. Environ Pollut 112:463–470

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Higher Education, Malaysia (MOHE), for the financial support under Fundamental Research Grant Scheme (FRGS) of grant number 4F184 and Universiti Teknologi Malaysia RUG Grant no. 17H14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shafinaz Shahir.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadi Haris, S., Altowayti, W.A.H., Ibrahim, Z. et al. Arsenic biosorption using pretreated biomass of psychrotolerant Yersinia sp. strain SOM-12D3 isolated from Svalbard, Arctic. Environ Sci Pollut Res 25, 27959–27970 (2018). https://doi.org/10.1007/s11356-018-2799-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2799-z

Keywords

Navigation