Skip to main content

Advertisement

Log in

Metal release and sequestration from black slate mediated by a laccase of Schizophyllum commune

  • New Toxic Emerging Contaminants: Beyond the Toxicological effects
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Schizophyllum commune is a filamentous basidiomycete which can degrade complex organic macromolecules like lignin by the secretion of a large repertoire of enzymes. One of these white rot enzymes, laccase, exhibits a broad substrate specificity and is able to oxidize a variety of substances including carbonaceous rocks. To investigate the role of laccase in bioweathering, laccase gene lcc2 was overexpressed, and the influence on weathering of black slate, originating from a former alum mine in Schmiedefeld, Germany, was examined. The metal release from the rock material was enhanced, associated with a partial metal accumulation into the mycelium. A sequestration of metals could be shown with fluorescent staining methods, and an accumulation of Zn, Cd, and Pb was visualized in different cell organelles. Additionally, we could show an increased metal resistance of the laccase overexpressing strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzym Microb Technol 32:87–91

    Article  Google Scholar 

  • Baldrian P, Gabriel J (2002) Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiol Lett 206:69–74

    Article  CAS  Google Scholar 

  • Baldrian P, Valášková V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521

    Article  CAS  Google Scholar 

  • Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254:173–181

    Article  CAS  Google Scholar 

  • Burford EP, Fomina M, Gadd GM (2003) Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral Mag 67:1127–1155

    Article  CAS  Google Scholar 

  • Cañero DC, Roncero M (2008) Functional analyses of laccase genes from Fusarium oxysporum. Phytopathology 98:509–518

    Article  Google Scholar 

  • Claus H (2004) Laccases: structure, reactions, distribution. Micron 35:93–96

    Article  CAS  Google Scholar 

  • Crowe JD, Olsson S (2001) Induction of laccase activity in Rhizoctonia solani by antagonistic Pseudomonas fluorescens strains and a range of chemical treatments. Appl Environ Microbiol 67:2088–2094

    Article  CAS  Google Scholar 

  • De la Torre M, Gomez-Alarcon G (1994) Manganese and iron oxidation by fungi isolated from building stone. Microb Ecol 27:177–188

    Article  Google Scholar 

  • Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529–539

  • Ezaki B, Nakakihara E (2012) Possible involvement of GDI1 protein, a GDP dissociation inhibitor related to vesicle transport, in an amelioration of zinc toxicity in Saccharomyces cerevisiae. Yeast 29:17–24

    Article  CAS  Google Scholar 

  • Gabriel J, Mokrejš M, Bílý J, Rychlovský P (1994) Accumulation of heavy metals by some wood-rotting fungi. Folia Microbiol 39:115–118

    Article  CAS  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Article  CAS  Google Scholar 

  • Gadd GM (2016) Geomycology. In: Purchase D (ed) Fungal applications in sustainable environmental biotechnology. Springer, Berlin, pp 371–401

    Chapter  Google Scholar 

  • Gadd GM, Bahri-Esfahani J, Li Q, Rhee YJ, Wei Z, Fomina M, Liang X (2014) Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biol Rev 28:36–55

    Article  Google Scholar 

  • Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385

    Article  CAS  Google Scholar 

  • Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/ss-DNA/PEG procedure. Yeast 11:355–360

    Article  CAS  Google Scholar 

  • Gochev VK, Krastanov AI (2007) Fungal Laccases. Bulg J Agric Sci 13:75–83

    Google Scholar 

  • Gola S, Kothe E (2003) An expression system for the functional analysis of pheromone genes in the tetrapolar basidiomycete Schizophyllum commune. J Basic Microbiol 43:104–112

    Article  CAS  Google Scholar 

  • Graham HD (1992) Stabilization of the Prussian blue color in the determination of polyphenols. J Agric Food Chem 40:801–805

    Article  CAS  Google Scholar 

  • Grant CM (2001) Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol Microbiol 39:533–541

    Article  CAS  Google Scholar 

  • Grawunder A, Merten D, Büchel G (2014) Origin of middle rare earth element enrichment in acid mine drainage-impacted areas. Environ Sci Pollut Res 21:6812–6823

    Article  CAS  Google Scholar 

  • Grąz M, Jarosz-Wilkołazka A, Pawlikowska-Pawlęga B (2009) Abortiporus biennis tolerance to insoluble metal oxides: oxalate secretion, oxalate oxidase activity, and mycelial morphology. Biometals 22:401–410

    Article  Google Scholar 

  • Grishkan I (2011) Ecological stress: melanization as a response in fungi to radiation. In: Horikoshi K (ed) Extremophiles handbook. Springer, Berlin, pp 1135–1145

    Chapter  Google Scholar 

  • Gube M (2016) Fungal molecular response to heavy metal stress. In: Hoffmeister D (ed) Biochemistry and molecular biology. Springer, Berlin, pp 47–68

    Chapter  Google Scholar 

  • Hatvani N, Mécs I (2003) Effects of certain heavy metals on the growth, dye decolorization, and enzyme activity of Lentinula edodes. Ecotoxicol Environ Saf 55:199–203

    Article  CAS  Google Scholar 

  • Hickey PC, Swift SR, Roca MG, Read ND (2004) Live-cell imaging of filamentous fungi using vital fluorescent dyes and confocal microscopy. Methods Microbiol 34:63–87

    Article  Google Scholar 

  • Hobman JL, Yamamoto K, Oshima T (2007) Transcriptomic responses of bacterial cells to sublethal metal ion stress. In: Nies DH, Siver S (eds) Molecular microbiology of heavy metals. Springer, Berlin, pp 73–115

    Chapter  Google Scholar 

  • Höfer C, Schlosser D (1999) Novel enzymatic oxidation of Mn2+ to Mn3+ catalyzed by a fungal laccase. FEBS Lett 451:186–190

    Article  Google Scholar 

  • Jacob C, Courbot M, Martin F, Brun A, Chalot M (2004) Transcriptomic responses to cadmium in the ectomycorrhizal fungus Paxillus involutus. FEBS Lett 576:423–427

    Article  CAS  Google Scholar 

  • Jarosz-Wilkolazka A, Gadd GM (2003) Oxalate production by wood-rotting fungi growing in toxic metal-amended medium. Chemosphere 52:541–547

    Article  CAS  Google Scholar 

  • Jaszek M, Grzywnowicz K, Malarczyk E, Leonowicz A (2006) Enhanced extracellular laccase activity as a part of the response system of white rot fungi: Trametes versicolor and Abortiporus biennis to paraquat-caused oxidative stress conditions. Pesticide Biochem Physiol 85:147–154

    Article  CAS  Google Scholar 

  • Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87

    Article  CAS  Google Scholar 

  • Kirtzel J, Siegel D, Krause K, Kothe E (2017) Stone-eating fungi: mechanisms in bioweathering and the potential role of laccases in black slate degradation with the basidiomycete Schizophyllum commune. Adv Appl Microbiol 99:83–101

    Article  Google Scholar 

  • Kües U, Rühl M (2011) Multiple multi-copper oxidase gene families in basidiomycetes—what for? Curr Genom 12:72–94

    Article  Google Scholar 

  • Kumar R, Kumar AV (1999) Biodeterioration of stone in tropical environments: an overview. The Ghetty Conservation Institute, Los Angeles

    Google Scholar 

  • Kunamneni A (2007) Fungal laccase—a versatile enzyme for biotechnological applications. In: Mendez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. Formatex, Badajoz, pp 233–244

    Google Scholar 

  • Ledin M, Pedersen K (1996) The environmental impact of mine wastes—roles of microorganisms and their significance in treatment of mine wastes. Earth Sci Rev 41:67–108

    Article  CAS  Google Scholar 

  • Lorenzo M, Moldes D, Sanromán MÁ (2006) Effect of heavy metals on the production of several laccase isoenzymes by Trametes versicolor and on their ability to decolourise dyes. Chemosphere 63:912–917

    Article  CAS  Google Scholar 

  • Madhavan S, Krause K, Jung E-M, Kothe E (2014) Differential regulation of multi-copper oxidases in Schizophyllum commune during sexual development. Mycol Prog 13:1199–1206

    Article  Google Scholar 

  • Martínez A, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, del Río J (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204

    Google Scholar 

  • Meyers DE, Auchterlonie GJ, Webb RI, Wood B (2008) Uptake and localisation of lead in the root system of Brassica juncea. Environ Pollut 153:323–332

    Article  CAS  Google Scholar 

  • Missall TA, Moran JM, Corbett JA, Lodge JK (2005) Distinct stress responses of two functional laccases in Cryptococcus neoformans are revealed in the absence of the thiol-specific antioxidant Tsa1. Eukaryot Cell 4:202–208

    Article  CAS  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    Article  CAS  Google Scholar 

  • Munoz-Rivas A, Specht CA, Drummond BJ, Froeliger E, Novotny CP, Ullrich RC (1986) Transformation of the basidiomycete Schizophyllum commune. Mol Gen Genet 205:103–106

    Article  CAS  Google Scholar 

  • Ohm RA, de Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE, de Vries RP, Record E, Levasseur A, Baker SE, Bartholomew KA, Coutinho PM, Erdmann S, Fowler TJ, Gathman AC, Lombard V, Henrissat B, Knabe N, Kües U, Lilly WW, Lindquist E, Lucas S, Magnuson JK, Piumi F, Raudaskoski M, Salamov A, Schmutz J, Schwarze FWMR, vanKuyk PA, Horton JS, Grigoriev IV, Wösten HAB (2010) Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol 28:957–963

    Article  CAS  Google Scholar 

  • Ott T, Fritz E, Polle A, Schützendübel A (2002) Characterisation of antioxidative systems in the ectomycorrhiza-building basidiomycete Paxillus involutus (Bartsch) Fr. and its reaction to cadmium. FEMS Microbiol Ecol 42:359–366

    Article  CAS  Google Scholar 

  • Pócsi I (2011) Toxic metal/metalloid tolerance in fungi—a biotechnology-oriented approach. In: Banfalvi G (ed) Cellular effects of heavy metals. Springer, Berlin, pp 31–58

    Chapter  Google Scholar 

  • Rangel DEN, Alder-Rangel A, Dadachova E, Finlay RD, Kupiec M, Dijksterhuis J, Braga GUL, Corrochano LM, Hallsworth JE (2015) Fungal stress biology: a preface to the fungal stress responses special edition. Curr Genet 61:231–238

    Article  CAS  Google Scholar 

  • Raper JR, Hoffman RM (1974) Schizophyllum commune. In: Bacteria, bacteriophages, and Fungi. Springer, Berlin, pp 597–626

    Chapter  Google Scholar 

  • Renshaw JC, Robson GD, Trinci AP, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106:1123–1142

    Article  CAS  Google Scholar 

  • Rose MD, Winston F, Hieter P (1990) Methods in yeast genetics : a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sácký J, Leonhardt T, Borovička J, Gryndler M, Briksí A, Kotrba P (2014) Intracellular sequestration of zinc, cadmium and silver in Hebeloma mesophaeum and characterization of its metallothionein genes. Fungal Genet Biol 67:3–14

    Article  Google Scholar 

  • Tang Y, Zeiner CA, Santelli CM, Hansel CM (2013) Fungal oxidative dissolution of the Mn(II)-bearing mineral rhodochrosite and the role of metabolites in manganese oxide formation. Environ Microbiol 15:1063–1077

    Article  CAS  Google Scholar 

  • Tekere M, Mswaka AY, Zvauya R, Read JS (2001) Growth, dye degradation and ligninolytic activity studies on Zimbabwean white rot fungi. Enzyme Microb Technol 28:420–426

  • Valko M, Morris H, Cronin M (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–12

    Article  Google Scholar 

  • Vesentini D, Dickinson DJ, Murphy RJ (2007) The protective role of the extracellular mucilaginous material (ECMM) from two wood-rotting basidiomycetes against copper toxicity. Int Biodeterior Biodegrad 60:1–7

    Article  CAS  Google Scholar 

  • Wendland J, Kothe E (1997) Isolation of tef1 encoding translation elongation factor EF1α from the homobasidiomycete Schizophyllum commune. Mycol Res 101:798–802

    Article  CAS  Google Scholar 

  • Wengel M, Kothe E, Schmidt CM, Heide K, Gleixner G (2006) Degradation of organic matter from black shales and charcoal by the wood-rotting fungus Schizophyllum commune and release of DOC and heavy metals in the aqueous phase. Sci Total Environ 367:383–393

    Article  CAS  Google Scholar 

  • Willmann G, Fakoussa R (1997) Extracellular oxidative enzymes of coal-attacking fungi. Fuel Process Technol 52:27–41

    Article  CAS  Google Scholar 

  • Yang Y, Fan F, Zhuo R, Ma F, Gong Y, Wan X, Jiang M, Zhang X (2012) Expression of the laccase gene from a white rot fungus in Pichia pastoris can enhance the resistance of this yeast to H2O2-mediated oxidative stress by stimulating the glutathione-based antioxidative system. Appl Environ Microbiol 78:5845–5854

    Article  CAS  Google Scholar 

  • Zeien H, Brümmer G (1989) Chemische Extraktion zur Bestimmung von Schwermetallbindungsformen in Böden. Mitt Dtsch Bodenkdl Ges 59:505–510

    Google Scholar 

  • Zhang Z, Zhang Z, Chen H, Liu J, Liu C, Ni H, Zhao C, Ali M, Liu F, Li L (2015) Surface Mn(II) oxidation actuated by a multicopper oxidase in a soil bacterium leads to the formation of manganese oxide minerals. Sci Rep 5:1–13

    Google Scholar 

Download references

Acknowledgements

This project was supported by the Deutsche Forschungsgesellschaft through GRK 1257 and JSMC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Kothe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Diane Purchase

Electronic supplementary material

ESM 1

(PDF 87 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirtzel, J., Scherwietes, E.L., Merten, D. et al. Metal release and sequestration from black slate mediated by a laccase of Schizophyllum commune. Environ Sci Pollut Res 26, 5–13 (2019). https://doi.org/10.1007/s11356-018-2568-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2568-z

Keywords

Navigation