Skip to main content
Log in

Application of direct contact membrane distillation for saline dairy effluent treatment: performance and fouling analysis

  • Advanced Oxidation Process for Sustainable Water Management
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Membrane distillation is getting increasing attention thanks to its advantages in terms of energy consumption and final permeate quality in addition to its resistance against highly corrosive media which forms an appealing solution for industrial wastewater treatment. Despite its advantages, one of the most challenging issues in direct contact membrane distillation (DCMD) is membrane fouling and wetting. In the present research work, saline dairy effluent discharged from hard cheese industry was pretreated by macrofiltration (MAF) and ultrafiltration (UF) and processed by DCMD to investigate the extent of the aforementioned issues. Effluents pretreated by UF have led the best process performance with stable flux values at different operating conditions. Fouling has occurred in all the experiments, though their effect on the flux behavior and membrane wetting was different from one feed to the other. Changing the flow rate and the temperature difference have affected slightly the membrane wettability for all feed qualities. In all experiments, the permeate has maintained a good quality with low electrical conductivity that did not exceed 70 μS/cm and low total organic carbon < 2 mg/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

CA:

contact angle

DCMD:

direct contact membrane distillation

EDX:

energy dispersive X-ray

LEP:

liquid entry pressure

MAF:

macrofiltration

MAF-UF-WW:

pretreated effluent by macrofiltration and ultrafiltration

MAF-WW:

pretreated effluent by macrofiltration

PP:

polypropylene

PTFE:

polytetrafluoroethylene

R-WW:

raw effluent

SEM:

scanning electron microscopy

TOC:

total organic carbon

UF:

ultrafiltration

T :

temperature difference

Ƞth:

thermal efficiency

Tco:

permeate outlet temperature

Tei:

feed inlet temperature

Vc:

permeate velocity

Ve:

feed velocity

References

  • Alkhudhiri A, Darwish N, Hilal N (2012) Membrane distillation: a comprehensive review. Desalination 287:2–18

    Article  CAS  Google Scholar 

  • Ashoor BB, Mansour S, Giwa A, Dufour V, Hasan SW (2016) Principles and applications of direct contact membrane distillation (DCMD): a comprehensive review. Desalination 398:222–246

    Article  CAS  Google Scholar 

  • Blaschek KM, Wendorff WL, Rankin SA (2007) Survey of salty and sweet whey composition from various cheese plants in Wisconsin. J Dairy Sci 90(4):2029–2034

    Article  CAS  Google Scholar 

  • Bottino A, Capannelli G, Monticelli O, Piaggio P (2000) Poly(vinylidene fluoride) with improved functionalization for membrane production. J Membr Sci 166:23–29

    Article  CAS  Google Scholar 

  • Camacho LM, Dumée L, Zhang J, De Li J, Duke M, Gomez J (2013) Advances in membrane distillation for water desalination and purification applications. Water (Switzerland) 5:94–196

    Google Scholar 

  • Carvalho F, Prazeres AR, Rivas J (2013) Cheese whey wastewater: characterization and treatment. Sci Total Environ 445–446:385–396

    Article  CAS  Google Scholar 

  • Corcoran E, Nellemann C, Baker E, Bos R, Osborn D, Savelli H (2010) Sick water? The central role of wastewater management in sustainable development. A rapid response assessment. United Nations Environment Programme, UN-HABITAT, GRID-Arendal. Norway. http://www.coalition-eau.org/wp-content/uploads/SickWater_screen.pdf

  • De La Fuente MA, Singh H, Hemar Y (2002) Recent advances in the characterization of heat induced aggregates and intermediates of whey proteins. Trends Food Sci Technol 13(8):262–274

    Article  Google Scholar 

  • El-Bourawi MS, Ding Z, Ma R, Khayet M (2006) A framework for better understanding membrane distillation separation process. J Membr Sci 285:4–29

    Article  CAS  Google Scholar 

  • Ge J, Peng Y, Li Z, Chen P, Wang S (2014) Membrane fouling and wetting in a DCMD process for RO brine concentration. Desalination 344:97–107

    Article  CAS  Google Scholar 

  • Gryta M (2008) Fouling in direct contact membrane distillation process. J Membr Sci 325:383–394

    Article  CAS  Google Scholar 

  • Gryta M (2012) Effectiveness of water desalination by membrane distillation process. Membranes 2:415–429

    Article  CAS  Google Scholar 

  • Hausmann A, Sanciolo P, Vasiljevic T, Weeks M, Schroën K, Gray S, Duke M (2013a) Fouling mechanisms of dairy streams during membrane distillation. J Membr Sci 441:102–111

    Article  CAS  Google Scholar 

  • Hausmann A, Sanciolo P, Vasiljevic T, Weeks M, Schroën K, Gray S, Duke M (2013b) Fouling of dairy components on hydrophobic polytetrafluoroethylene (PTFE) membranes for membrane distillation. J Membr Sci 442:149–159

    Article  CAS  Google Scholar 

  • Jang D, Hwang Y, Shin H, Lee W (2013) Effects of salinity on the characteristics of biomass and membrane fouling in membrane bioreactors. Bioresour Technol 141:50–56

    Article  CAS  Google Scholar 

  • Kehoe JJ, Foegeding EA (2011) Interaction between β-casein and whey proteins as a function of pH and salt concentration. J Agric Food Chem 59:349–355

    Article  CAS  Google Scholar 

  • Kezia K, Judy L, Mike W, Sandra K (2015) Direct contact membrane distillation for the concentration of saline dairy effluent. Water Res 81:167–177

    Article  CAS  Google Scholar 

  • Laganà F, Barbieri G, Drioli E (2000) Direct contact membrane distillation: modelling and concentration experiments. J Membr Sci 166:1–11

    Article  Google Scholar 

  • Lawson KW, Lloyd DR (1996) Membrane distillation. II. Direct contact membrane distillation. J Membr Sci 120:123–133

    Article  CAS  Google Scholar 

  • Mounsey JS, O’Kennedy BT (2009) Stability of β-lactoglobulin/micellar casein mixtures on heating in simulated milk ultrafiltrate at pH 6.0. Int J Dairy Technol 62(4):493–499

    Article  Google Scholar 

  • Naidu G, Jeong S, Kim S-J, Kim IS, Vigneswaran S (2014) Organic fouling behavior in direct contact membrane distillation. Desalination 347:230–239

    Article  CAS  Google Scholar 

  • Onsekizoglu Bagci P (2013) Potential of membrane distillation for production of high quality fruit juice concentrate. Crit Rev Food Sci Nutr 55:1098–1113

    Article  CAS  Google Scholar 

  • Pierre A, Fauquant J, Le Graet Y, Piot M, Maubois JL (1992) Préparation de phosphocaséinate natif par microfiltration sur membrane. Lait 72:461–474

    Article  CAS  Google Scholar 

  • Rice G, Kentish SE, O'Connor A, Barber A, Philajamaki A, Nystrom M, Stevens GW (2009) Analysis of separation and fouling behavior during nanofiltration of dairy ultrafiltration permeate. Desalination 236:23–29

    Article  CAS  Google Scholar 

  • Saffarini RB, Mansoor B, Thomas R, Arafat HA (2013) Effect of temperature-dependent microstructure evolution on pore wetting in PTFE membranes under membrane distillation conditions. J Membr Sci 429:282–294

    Article  CAS  Google Scholar 

  • Schofield RW, Fane AG, Fell CJD (1987) Heat and mass transfer in membrane distillation. J Membr Sci 33:299–313

    Article  CAS  Google Scholar 

  • Schofield RW, Fane AG, Fell CJD, Macoun R (1990) Factors affecting flux in membrane distillation. Desalination 77:279–294

    Article  CAS  Google Scholar 

  • Shahzad MW, Burhan M, Ang L, Choon Ng K (2017) Energy-water-environment nexus underpinning future desalination sustainability. Desalination 413:52–64

    Article  CAS  Google Scholar 

  • Singh H, Boland M, Thompson A (2014) Milk proteins: from expression to food (second edition). A volume in Food science and technology. Copyright © 2014 Elsevier Inc. ISBN: 978-0-12-405171-3

  • Tijing LD, Woo YC, Choi J-S, Lee S, Kim S-H, Shon HK (2015) Fouling and its control in membrane distillation—a review. J Membr Sci 475:215–224

    Article  CAS  Google Scholar 

  • Waninge R, Walstra P, Bastiaans J, Nieuwenhuijse H, Nylander T, Paulsson M, Bergenståhl B (2005) Competitive adsorption between â-casein or â-lactoglobulin and model milk membrane lipids at oil-water interfaces. J Agric Food Chem 53:716–724

    Article  CAS  Google Scholar 

  • Winter D (2015) Membrane distillation—a thermodynamic, technological and economic analysis. Schriftenreihe der Reiner Lemoine-Stiftung. D 386 (Diss. Technische Universität Kaiserslautern) Aachen, Germany. ISBN 978-3-8440-3706-7

  • Winter D, Koschikowski J, Düver D, Hertel P, Beuscher U (2013) Evaluation of MD process performance: effect of backing structures and membrane properties under different operating conditions. Desalination 323:120–133

    Article  CAS  Google Scholar 

  • WWAP (United Nations World Water Assessment Programme) 2014 The United Nations World Water Development Report 2014: water and energy. Paris, UNESCO. ISBN 978-92-3-104259-1. http://unesdoc.unesco.org/images/0022/002257/225741E.pdf

  • Zisman W. A. (1964). Relation of the equilibrium contact angle to liquid and solid constitution. Advances in chemistry; American Chemical Society: Washington, DC

Download references

Acknowledgments

This research was supported by a fellowship grant received by Ms. Sana Abdelkader in the frame of the program “Bourse d’Alternance” provided by the Ministry of Higher Education and Scientific Research, Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latifa Bousselmi.

Additional information

Responsible editor: Bingcai Pan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelkader, S., Gross, F., Winter, D. et al. Application of direct contact membrane distillation for saline dairy effluent treatment: performance and fouling analysis. Environ Sci Pollut Res 26, 18979–18992 (2019). https://doi.org/10.1007/s11356-018-2475-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2475-3

Keywords

Navigation