Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 28, pp 27748–27755 | Cite as

Activated carbon as catalyst for microwave-assisted wet peroxide oxidation of aromatic hydrocarbons

  • Alicia L. Garcia-CostaEmail author
  • Lucia Lopez-Perela
  • Xiyan Xu
  • Juan A. Zazo
  • Juan J. Rodriguez
  • Jose A. Casas
New Challenges in the Application of Advanced Oxidation Processes

Abstract

This paper addresses the removal of four aromatic hydrocarbons typically found in petrochemical wastewater: benzene (B), toluene (T), o-xylene (X), and naphthalene (N), by microwave-assisted catalytic wet peroxide oxidation (MW-CWPO) using activated carbon (AC) as catalyst. Under the studied conditions, complete pollutant elimination (B, 1.28 mM; T, 1.09 mM; X, 0.94 mM; and N, 0.78 mM) was achieved, with more than 90% TOC removal after only 15-min reaction time, working at 120 °C, pH0 = 3, AC at 1 g L−1, and H2O2 at the stoichiometric dose. Furthermore, in the case of toluene, naphthalene, and xylene, the hydroxylation and breakdown of the ring is very rapid and toxic intermediates were not detected. The process follows two steps: (i) pollutant adsorption onto AC followed by (ii) adsorbed compounds oxidation. Thus, MW-CWPO with AC as catalyst appears a promising way for a fast and effective process for B, T, X, and N removal in aqueous phase.

Keywords

Microwave CWPO Activated carbon BTXN Mineralization AOP 

Notes

Funding information

Authors would like to thank the Spanish Ministerio de Economía y Competitividad (MINECO) for financial support through project CTM2016-76454-R. A.L. Garcia-Costa acknowledges the European Social Fund and MINECO for PhD grant BES-2014-067598.

Supplementary material

11356_2018_2291_MOESM1_ESM.docx (75 kb)
ESM 1 (DOCX 75 kb)

References

  1. Abussaud BA, Ulkem N, Berk D, Kubes GJ (2008) Wet air oxidation of benzene. Ind Eng Chem Res 47:4325–4331.  https://doi.org/10.1021/ie800162j CrossRefGoogle Scholar
  2. Atta AY, Jibril BY, Al-Waheibi TK, Al-Waheibi YM (2012) Microwave-enhanced catalytic degradation of 2-nitrophenol on alumina-supported copper oxides. Catal Commun 26:112–116.  https://doi.org/10.1016/j.catcom.2012.04.033 CrossRefGoogle Scholar
  3. Dominguez CM, Ocon P, Quintanilla A, Casas JA, Rodriguez JJ (2013) Highly efficient application of activated carbon as catalyst for wet peroxide oxidation. Appl Catal B Environ 140:663–670.  https://doi.org/10.1016/j.apcatb.2013.04.068 CrossRefGoogle Scholar
  4. Dominguez CM, Ocon P, Quintanilla A, Casas JA, Rodriguez JJ (2014) Graphite and carbon black materials as catalysts for wet peroxide oxidation. Appl Catal B Environ 144:599–606.  https://doi.org/10.1016/j.apcatb.2013.07.069 CrossRefGoogle Scholar
  5. Eisenberg GM (1943) Colorimetric determination of hydrogen peroxide. Ind Eng Chem Anal Ed 15:327–328.  https://doi.org/10.1021/i560117a011 CrossRefGoogle Scholar
  6. Garcia-Costa AL, Zazo JA, Casas JA, Rodriguez JJ (2017) Microwave-assisted catalytic wet peroxide oxidation. Comparison of Fe catalysts supported on activated carbon and g-alumina. Appl Catal B Environ 218:5–642.  https://doi.org/10.1016/j.apcatb.2017.06.058 CrossRefGoogle Scholar
  7. Gong CH, Shen G, Huang HO, He PR, Zhang ZG, Ma BQ (2017) Removal and transformation of polycyclic aromatic hydrocarbons during electrocoagulation treatment of an industrial wastewater. Chemosphere 168:58–64.  https://doi.org/10.1016/j.chemosphere.2016.10.044 CrossRefGoogle Scholar
  8. Kang HJ, Lee SY, Roh JY, Yim UH, Shim WJ, Kwon JH (2014) Prediction of Ecotoxicity of heavy crude oil: contribution of measured components. Environ Sci Technol 48:2962–2970.  https://doi.org/10.1021/es404342k CrossRefGoogle Scholar
  9. Lamichhane S, Krishna KCB, Sarukkalige R (2017) Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: a review. J Environ Manag 199:46–61.  https://doi.org/10.1016/j.jenvman.2017.05.037 CrossRefGoogle Scholar
  10. Lutynski M, Suponik T (2014) Hydrocarbons removal from underground coal gasification water by organic adsorbents. Physicochem Probl Miner Process 50:289–298.  https://doi.org/10.5277/ppmp140124 CrossRefGoogle Scholar
  11. Mascolo G, Ciannarella R, Balest L, Lopez A (2008) Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: a laboratory investigation. J Hazard Mater 152:1138–1145.  https://doi.org/10.1016/j.jhazmat.2007.07.120 CrossRefGoogle Scholar
  12. Menéndez JA, Arenillas A, Fidalgo B, Fernández Y, Zubizarreta L, Calvo EG, Bermúdez JM (2010) Microwave heating processes involving carbon materials. Fuel Process Technol 91:1–8.  https://doi.org/10.1016/j.fuproc.2009.08.021 CrossRefGoogle Scholar
  13. Mota ALN, Albuquerque LF, Beltrame LTC, Chiavone-Filho O, Machulek A Jr, Nascimento CAO (2008) Advanced oxidation processes and their application in the petroleum industry: a review. Brazilian Journal of Petroleum and Gas 2:20Google Scholar
  14. Nascimento UM, Azevedo EB (2013) Microwaves and their coupling to advanced oxidation processes: enhanced performance in pollutants degradation. J Environ Sci Health A Tox Hazard Subst Environ Eng 48:1056–1072.  https://doi.org/10.1080/10934529.2013.773822 CrossRefGoogle Scholar
  15. Pan W, Zhang G, Zheng T, Wang P (2015) Degradation of p-nitrophenol using CuO/Al2O3as a Fenton-like catalyst under microwave irradiation. RSC Adv 5:27043–27051.  https://doi.org/10.1039/c4ra14516j CrossRefGoogle Scholar
  16. Pliego G, Zazo JA, Garcia-Munoz P, Munoz M, Casas JA, Rodriguez JJ (2015) Trends in the intensification of the Fenton process for wastewater treatment: an overview. Crit Rev Environ Sci Technol 45:2611–2692.  https://doi.org/10.1080/10643389.2015.1025646 CrossRefGoogle Scholar
  17. Psillakis E, Goula G, Kalogerakis N, Mantzavinos D (2004) Degradation of polycyclic aromatic hydrocarbons in aqueous solutions by ultrasonic irradiation. J Hazard Mater 108:95–102.  https://doi.org/10.1016/j.jhazmat.2004.01.004 CrossRefGoogle Scholar
  18. Qi JW, Li J, Li Y, Fang X, Sun X, Shen J, Han W, Wang L (2017) Synthesis of porous carbon beads with controllable pore structure for volatile organic compounds removal. Chem Eng J 307:989–998.  https://doi.org/10.1016/j.cej.2016.09.022 CrossRefGoogle Scholar
  19. Ramteke LP, Gogate PR (2015) Treatment of toluene, benzene, naphthalene and xylene (BTNXs) containing wastewater using improved biological oxidation with pretreatment using Fenton/ultrasound based processes. J Ind Eng Chem 28:247–260.  https://doi.org/10.1016/j.jiec.2015.02.022 CrossRefGoogle Scholar
  20. Remya N, Lin J-G (2011) Current status of microwave application in wastewater treatment—a review. Chem Eng J 166:797–813.  https://doi.org/10.1016/j.cej.2010.11.100 CrossRefGoogle Scholar
  21. Saien J, Nejati H (2007) Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions. J Hazard Mater 148:491–495.  https://doi.org/10.1016/j.jhazmat.2007.03.001 CrossRefGoogle Scholar
  22. Smol M, Wlodarczyk-Makula M, Skowron-Grabowska B (2017) PAHs removal from municipal landfill leachate using an integrated membrane system in aspect of legal regulations. Desalin Water Treat 69:335–343.  https://doi.org/10.5004/dwt.2017.20241 CrossRefGoogle Scholar
  23. Steliga T, Jakubowicz P, Kapusta P (2015) Changes in toxicity during treatment of wastewater from oil plant contaminated with petroleum hydrocarbons. J Chem Technol Biotechnol 90:1408–1418.  https://doi.org/10.1002/jctb.4442 CrossRefGoogle Scholar
  24. Suarez-Ojeda ME, Stuber F, Fortuny A, Fabregat A, Carrera J, Font J (2005) Catalytic wet air oxidation of substituted phenols using activated carbon as catalyst. Appl Catal B Environ 58:105–114.  https://doi.org/10.1016/j.apcatb.2004.11.017 CrossRefGoogle Scholar
  25. Tiburtius ERL, Peralta-Zamora P, Emmel A (2005) Treatment of gasoline-contaminated waters by advanced oxidation processes. J Hazard Mater 126:86–90.  https://doi.org/10.1016/j.jhazman.2005.06.003 CrossRefGoogle Scholar
  26. Valderrama C, Gamisans X, de las Heras X, Farran A, Cortina JL (2008) Sorption kinetics of polycyclic aromatic hydrocarbons removal using granular activated carbon: intraparticle diffusion coefficients. J Hazard Mater 157:386–396.  https://doi.org/10.1016/j.jhazmat.2007.12.119 CrossRefGoogle Scholar
  27. Wang N, Wang P (2016) Study and application status of microwave in organic wastewater treatment—a review. Chem Eng J 283:193–214.  https://doi.org/10.1016/j.cej.2015.07.046 CrossRefGoogle Scholar
  28. Wei J, Li J, Huang GH, Wang XJ, Chen GH, Zhao BH (2016) Adsorptive removal of naphthalene induced by structurally different Gemini surfactants in a soil-water system. Environ Sci Pollut Res 23:18034–18042.  https://doi.org/10.1007/s11356-016-6966-9 CrossRefGoogle Scholar
  29. Yavuz Y, Koparal AS, Ogutveren UB (2010) Treatment of petroleum refinery wastewater by electrochemical methods. Desalination 258:201–205.  https://doi.org/10.1016/j.desal.2010.03.013 CrossRefGoogle Scholar
  30. Zazo JA, Casas JA, Mohedano AF, Gilarranz MA, Rodriguez JJ (2005) Chemical pathway and kinetics of phenol oxidation by Fenton’s reagent. Environ Sci Technol 39:9295–9302.  https://doi.org/10.1021/es050452h CrossRefGoogle Scholar
  31. Zazo JA, Casas JA, Mohedano AF, Rodriguez JJ (2006) Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst. Appl Catal B Environ 65:261–268.  https://doi.org/10.1016/j.apcatb.2006.02.008 CrossRefGoogle Scholar
  32. Zazo JA, Pliego G, Blasco S, Casas JA, Rodriguez JJ (2011) Intensification of the Fenton process by increasing the temperature. Ind Eng Chem Res 50:866–870.  https://doi.org/10.1021/ie101963k CrossRefGoogle Scholar
  33. Zazo JA, Pliego G, García-Muñoz P, Casas JA, Rodriguez JJ (2016) UV-LED assisted catalytic wet peroxide oxidation with a Fe(II)-Fe(III)/activated carbon catalyst. Appl Catal B Environ 192:350–356.  https://doi.org/10.1016/j.apcatb.2016.04.010 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alicia L. Garcia-Costa
    • 1
    Email author
  • Lucia Lopez-Perela
    • 1
  • Xiyan Xu
    • 1
  • Juan A. Zazo
    • 1
  • Juan J. Rodriguez
    • 1
  • Jose A. Casas
    • 1
  1. 1.Universidad Autonoma de MadridMadridSpain

Personalised recommendations