Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 20, pp 19818–19825 | Cite as

Organic solvent removal by pervaporation membrane technology: experimental and simulation

  • Mashallah Rezakazemi
  • Azam Marjani
  • Saeed Shirazian
Research Article

Abstract

This work presents purification of cyclohexane using polydimethylsiloxane (PDMS) membranes in pervaporation (PV) process. The PDMS is a rubbery polymer and appropriate as membrane material for purification of cyclohexane. PV which is a low-energy separation process was chosen for purification of cyclohexane due to its superior advantages compared to other processes. Effect of feed concentration on separation factor was investigated in order to optimize the process. It was indicated that dehydration of 80 wt% cyclohexane mixture at a temperature of 300 K and a vacuum pressure of 10 mmHg could be effectively achieved and high separation factor of 2500 was obtained. Furthermore, a two-dimensional mechanistic model was proposed for predicting mass transfer of cyclohexane in the process. The mechanistic model accounts for mass transfer of cyclohexane across the membrane, and concentration distribution of cyclohexane was determined. It was revealed that the most mass transfer flux of cyclohexane occur at the region near the inlet of feed channel, while the flux at the upper side of the module reaches zero value due to the effect of velocity distribution on the convective mass transfer of cyclohexane.

Keywords

Membranes Mechanistic modeling Cyclohexane purification Diffusion Mass transfer Simulations 

Nomenclature

C

concentration (mol/m3)

D

diffusion coefficient (m2/s)

E

activation energy (J)

F

body force (N)

H

enthalpy (J)

L

module length (m)

m

partition coefficient

p

pressure (Pa)

R

reaction term (mol/m3.s)

t

time (s)

T

temperature (K)

V

velocity vector (m/s)

x

x coordinate (m)

X

weight fraction in feed phase

y

y coordinate (m)

Y

weight fraction in permeate phase

Greek symbols

α

separation factor

η

dynamic viscosity (kg/m s)

ρ

density of the fluid (kg/m3)

Abbreviations

CX

cyclohexane

PDMS

polydimethylsiloxane

PV

pervaporation

References

  1. Abdullah NS, Das DB (2007) Modelling nutrient transport in hollow fibre membrane bioreactor for growing bone tissue with consideration of multi-component interactions. Chem Eng Sci 62:5821–5839CrossRefGoogle Scholar
  2. Abdullah NS, Das DB, Ye H, Cui ZF (2006) 3D bone tissue growth in hollow fibre membrane bioreactor: implications of various process parameters on tissue nutrition. Int J Artif Organs 29:841–851CrossRefGoogle Scholar
  3. Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev 4:37–59CrossRefGoogle Scholar
  4. Baheri B, Shahverdi M, Rezakazemi M, Motaee E, Mohammadi T (2014) Performance of PVA/NaA mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation. Chem Eng Commun 202:316–321CrossRefGoogle Scholar
  5. Farno E, Rezakazemi M, Mohammadi T, Kasiri N (2014) Ternary gas permeation through synthesized pdms membranes: experimental and CFD simulation basedon sorption-dependent system using neural network model. Polym Eng Sci 54:215–226CrossRefGoogle Scholar
  6. Fasihi M, Shirazian S, Marjani A, Rezakazemi M (2012) Computational fluid dynamics simulation of transport phenomena in ceramic membranes for SO2 separation. Math Comput Model 56:278–286CrossRefGoogle Scholar
  7. Fu C, Cai D, Hu S, Miao Q, Wang Y, Qin P, Wang Z, Tan T (2016) Ethanol fermentation integrated with PDMS composite membrane: an effective process. Bioresour Technol 200:648–657CrossRefGoogle Scholar
  8. Gómez P, Daviou MC, Ibáñez R, Eliceche AM, Ortiz I (2006a) Comparative behaviour of hydrophilic membranes in the pervaporative dehydration of cyclohexane. J Membr Sci 279:635–644CrossRefGoogle Scholar
  9. Gómez P, Ibáñez R, Ortiz I, Grossmann I (2006b) Optimum design of PV processes for dehydration of organic mixtures. Desalination 193:152–159CrossRefGoogle Scholar
  10. Hashemi F, Rowshanzamir S, Rezakazemi M (2012) CFD simulation of PEM fuel cell performance: effect of straight and serpentine flow fields. Math Comput Model 55:1540–1557CrossRefGoogle Scholar
  11. Kujawska A, Knozowska K, Kujawa J, Kujawski W (2016) Influence of downstream pressure on pervaporation properties of PDMS and POMS based membranes. Sep Purif Technol 159:68–80CrossRefGoogle Scholar
  12. Li D, Yao J, Sun H, Liu B, van Agtmaal S, Feng C (2018) Recycling of phenol from aqueous solutions by pervaporation with ZSM-5/PDMS/PVDF hollow fiber composite membrane. Appl Surf Sci 427:288–297CrossRefGoogle Scholar
  13. Rezakazemi M, Maghami M, Mohammadi T (2017) High loaded synthetic hazardous wastewater treatment using lab-scale submerged ceramic membrane bioreactor. Period Polytech Chem Eng pp 1-6.  https://doi.org/10.3311/PPch.11459
  14. Muhammad A, Younas M, Rezakazemi M (2017) Quasi-dynamic modeling of dispersion-free extraction of aroma compounds using hollow fiber membrane contactor. Chem Eng Res Des 127:52–61CrossRefGoogle Scholar
  15. Muhammad A, Younas M, Rezakazemi M (2018) CFD simulation of copper (II) extraction with TFA in non-dispersive hollow fiber membrane contactors. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-018-1282-1
  16. Ortiz I, Urtiaga A, Ibáñez R, Gómez P, Gorri D (2006) Laboratory- and pilot plant-scale study on the dehydration of cyclohexane by pervaporation. J Chem Technol Biotechnol 81:48–57CrossRefGoogle Scholar
  17. Razavi SMR, Rezakazemi M, Albadarin AB, Shirazian S (2016) Simulation of CO2 absorption by solution of ammonium ionic liquid in hollow-fiber contactors. Chem Eng Process Process Intensif 108:27–34CrossRefGoogle Scholar
  18. Rezakazemi M (2018) CFD simulation of seawater purification using direct contact membrane desalination (DCMD) system. Desalination.  https://doi.org/10.1016/j.desal.2017.12.048
  19. Rezakazemi M, Mohammadi T (2013) Gas sorption in H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38:14035–14041CrossRefGoogle Scholar
  20. Rezakazemi M, Niazi Z, Mirfendereski M, Shirazian S, Mohammadi T, Pak A (2011a) CFD simulation of natural gas sweetening in a gas–liquid hollow-fiber membrane contactor. Chem Eng J 168:1217–1226CrossRefGoogle Scholar
  21. Rezakazemi M, Shahverdi M, Shirazian S, Mohammadi T, Pak A (2011b) CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation. Chem Eng J 168:60–67CrossRefGoogle Scholar
  22. Rezakazemi M, Shahidi K, Mohammadi T (2012a) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrogen Energy 37:17275–17284CrossRefGoogle Scholar
  23. Rezakazemi M, Shahidi K, Mohammadi T (2012b) Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes. Int J Hydrogen Energy 37:14576–14589CrossRefGoogle Scholar
  24. Rezakazemi M, Shirazian S, Ashrafizadeh SN (2012c) Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor. Desalination 285:383–392CrossRefGoogle Scholar
  25. Rezakazemi M, Ghafarinazari A, Shirazian S, Khoshsima A (2013) Numerical modeling and optimization of wastewater treatment using porous polymeric membranes. Polym Eng Sci 53:1272–1278CrossRefGoogle Scholar
  26. Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014a) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39:817–861CrossRefGoogle Scholar
  27. Rezakazemi M, Shahidi K, Mohammadi T (2014b) Synthetic PDMS composite membranes for pervaporation dehydration of ethanol. Desalin Water Treat 54:1–8CrossRefGoogle Scholar
  28. Rezakazemi M, Khajeh A, Mesbah M (2017) Membrane filtration of wastewater from gas and oil production. Environ Chem Lett 1–22.  https://doi.org/10.1007/s10311-017-0693-4
  29. Rezakazemi M, Sadrzadeh M, Matsuura T (2018a) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41CrossRefGoogle Scholar
  30. Rezakazemi M, Sadrzadeh M, Mohammadi T (2018b) Chapter 13 – Separation via pervaporation techniques through polymeric membranes. In: Thomas S, Wilson R, Kumar A, Geroge SC (eds) Transport properties of polymeric membranes. Elsevier, New York, pp 243–263. https://doi.org/10.1016/B978-0-12-809884-4.00013-6
  31. Rostamizadeh M, Rezakazemi M, Shahidi K, Mohammadi T (2013) Gas permeation through H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38:1128–1135CrossRefGoogle Scholar
  32. Sadrzadeh M, Rezakazemi M, Mohammadi T (2018) Fundamentals and measurement techniques for gas transport in polymers. In: Thomas S., Wilson R., Kumar A., Geroge, SC  (eds), Chapter 19 – Transport properties of polymeric membranes. Elsevier, New York, pp 391–423.  https://doi.org/10.1016/B978-0-12-809884-4.00019-7
  33. Shahverdi M, Baheri B, Rezakazemi M, Motaee E, Mohammadi T (2013) Pervaporation study of ethylene glycol dehydration through synthesized (PVA-4A)/polypropylene mixed matrix composite membranes. Polym Eng Sci 53:1487–1493CrossRefGoogle Scholar
  34. Shavit U, Bar-Yosef G, Rosenzweig R, Assouline S (2002) Modified brinkman equation for a free flow problem at the interface of porous surfaces: the Cantor-Taylor brush configuration case. Water Resour Res 38:1320–1334CrossRefGoogle Scholar
  35. Shavit U, Rosenzweig R, Assouline S (2004) Free flow at the Interface of porous surfaces: a generalization of the Taylor brush configuration. Transp Porous Media 54:345–360CrossRefGoogle Scholar
  36. Shirazian S, Marjani A, Rezakazemi M (2011) Separation of CO2 by single and mixed aqueous amine solvents in membrane contactors: fluid flow and mass transfer modeling. Eng Comput 28:189–198CrossRefGoogle Scholar
  37. Shirazian S, Pishnamazi M, Rezakazemi M, Nouri A, Jafari M, Noroozi S, Marjani A (2012a) Implementation of the finite element method for simulation of mass transfer in membrane contactors. Chem Eng Technol 35:1077–1084Google Scholar
  38. Shirazian S, Rezakazemi M, Marjani A, Moradi S (2012b) Hydrodynamics and mass transfer simulation of wastewater treatment in membrane reactors. Desalination 286:290–295CrossRefGoogle Scholar
  39. Shirazian S, Rezakazemi M, Marjani A, Rafivahid MS (2012c) Development of a mass transfer model for simulation of sulfur dioxide removal in ceramic membrane contactors. Asia Pac J Chem Eng 7:828–834CrossRefGoogle Scholar
  40. Sohrabi MR, Marjani A, Moradi S, Davallo M, Shirazian S (2011) Mathematical modeling and numerical simulation of CO2 transport through hollow-fiber membranes. Appl Math Model 35:174–188CrossRefGoogle Scholar
  41. Urtiaga AM, Gorri ED, Gómez P, Casado C, Ibáñez R, Ortiz I (2007) Pervaporation technology for the dehydration of solvents and raw materials in the process industry. Dry Technol 25:1819–1828CrossRefGoogle Scholar
  42. Ye H, Das DB, Triffitt JT, Cui Z (2006) Modelling nutrient transport in hollow fibre membrane bioreactors for growing three-dimensional bone tissue. J Membr Sci 272:169–178CrossRefGoogle Scholar
  43. Zhang Z, Chen F, Rezakazemi M, Zhang W, Lu C, Chang H, Quan X (2018) Modeling of a CO 2 -piperazine-membrane absorption system. Chem Eng Res Des 131:375–384Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Chemical and Materials EngineeringShahrood University of TechnologyShahroodIran
  2. 2.Department of ChemistryIslamic Azad University, Arak BranchArakIran
  3. 3.Department for Management of Science and Technology DevelopmentTon Duc Thang UniversityHo Chi Minh CityVietnam
  4. 4.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations