Skip to main content

Advertisement

Log in

Upgradation of chemical, fuel, thermal, and structural properties of rice husk through microwave-assisted hydrothermal carbonization

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The process parameters of microwave hydrothermal carbonization (MHTC) have significant effect on yield of hydrochar. This study discusses the effect of process parameters on hydrochar yield produced from MHTC of rice husk. Results revealed that, over the ranges tested, a lower temperature, lower reaction time, lower biomass to water ratio, and higher particle size produce more hydrochar. Maximum hydrochar yield of 62.8% was obtained at 1000 W, 220 °C, and 5 min. The higher heating value (HHV) was improved significantly from 6.80 MJ/kg of rice husk to 16.10 MJ/kg of hydrochar. Elemental analysis results showed that the carbon content increased and oxygen content decreased in hydrochar from 25.9 to 47.2% and 68.5 to 47.0%, respectively, improving the energy and combustion properties. SEM analysis exhibited modification in structure of rice husk and improvement in porosity after MHTC, which was further confirmed from BET surface analysis. The BET surface area increased from 25.0656 m2/g (rice husk) to 92.6832 m2/g (hydrochar). Thermal stability of hydrochar was improved from 340 °C for rice husk to 370 °C for hydrochar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afolabi OO, Sohail M, Thomas C (2015) Microwave hydrothermal carbonization of human biowastes. Waste Biomass Valoriz 6:147–157

    Article  CAS  Google Scholar 

  • Afolabi OO, Sohail M, Thomas C (2017) Characterization of solid fuel chars recovered from microwave hydrothermal carbonization of human biowaste. Energy 134:74–89

    Article  Google Scholar 

  • Akhtar J, Amin NAS (2011) A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew Sust Energ Rev 15:1615–1624

    Article  CAS  Google Scholar 

  • Asadieraghi M, Wan Daud WMA (2014) Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: effects of demineralization by diverse acid solutions. Energy Convers Manag 82:71–82

    Article  CAS  Google Scholar 

  • Bhutto AW, Bazmi AA, Zahedi G (2011) Greener energy: issues and challenges for Pakistan—biomass energy prospective. Renew Sust Energ Rev 15:3207–3219

    Article  Google Scholar 

  • Bhutto AW, Qureshi K, Abro R, Harijan K, Zhao Z, Bazmi AA, Abbas T, Yu G (2016) Progress in the production of biomass-to-liquid biofuels to decarbonize the transport sector–prospects and challenges. RSC Adv 6:32140–32170

    Article  CAS  Google Scholar 

  • Chen W-H, Ye S-C, Sheen H-K (2012a) Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating. Bioresour Technol 118:195–203

    Article  CAS  Google Scholar 

  • Chen Y, Yang H, Wang X, Zhang S, Chen H (2012b) Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: influence of temperature. Bioresour Technol 107:411–418

    Article  CAS  Google Scholar 

  • Chen WY, Mattern DL, Okinedo E, Senter JC, Mattei AA, Redwine CW (2014) Photochemical and acoustic interactions of biochar with CO2 and H2O: applications in power generation and CO2 capture. AICHE J 60:1054–1065

    Article  CAS  Google Scholar 

  • Chowdhury Z, Hamid SA, Rahman MM, Rafique RF (2016) Catalytic activation and application of micro-spherical carbon derived from hydrothermal carbonization of lignocellulosic biomass: statistical analysis using Box–Behnken design. RSC Adv 6:102680–102694

    Article  CAS  Google Scholar 

  • Demirbaş A (2001) Relationships between lignin contents and heating values of biomass. Energy Convers Manag 42:183–188

    Article  Google Scholar 

  • Di Blasi C, Signorelli G, Di Russo C, Rea G (1999) Product distribution from pyrolysis of wood and agricultural residues. Ind Eng Chem Res 38:2216–2224

    Article  Google Scholar 

  • Du Y, Schuur B, Samorì C, Tagliavini E, Brilman DWF (2013) Secondary amines as switchable solvents for lipid extraction from non-broken microalgae. Bioresour Technol 149:253–260

    Article  CAS  Google Scholar 

  • Elaigwu SE, Greenway GM (2016a) Microwave-assisted hydrothermal carbonization of rapeseed husk: a strategy for improving its solid fuel properties. Fuel Process Technol 149:305–312

    Article  CAS  Google Scholar 

  • Elaigwu SE, Greenway GM (2016b) Microwave-assisted and conventional hydrothermal carbonization of lignocellulosic waste material: comparison of the chemical and structural properties of the hydrochars. J Anal Appl Pyrolysis 118:1–8

    Article  CAS  Google Scholar 

  • Elaigwu SE, Greenway GM (2016c) Chemical, structural and energy properties of hydrochars from microwave-assisted hydrothermal carbonization of glucose. Int J Ind Chem 7:449–456

    Article  CAS  Google Scholar 

  • Gao Y, Wang X, Wang J, Li X, Cheng J, Yang H, Chen H (2013) Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth. Energy 58:376–383

    Article  CAS  Google Scholar 

  • Guiotoku M, Rambo C, Hansel F, Magalhaes W, Hotza D (2009) Microwave-assisted hydrothermal carbonization of lignocellulosic materials. Mater Lett 63:2707–2709

    Article  CAS  Google Scholar 

  • Guo S, Dong X, Wu T, Zhu C (2016) Influence of reaction conditions and feedstock on hydrochar properties. Energy Convers Manag 123:95–103

    Article  CAS  Google Scholar 

  • Guo L, Hu Y, Wu L, Liang C, Zhang W (2017) The green hydrolysis technology of hemicellulose in corncob by the repeated use of hydrolysate. Chin J Chem Eng

  • Hoekman SK, Broch A, Robbins C, Zielinska B, Felix L (2013) Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks. Biomass Conv Biorefin 3:113–126

    Article  CAS  Google Scholar 

  • Hossain MA, Jewaratnam J, Ganesan P, Sahu J, Ramesh S, Poh S (2016) Microwave pyrolysis of oil palm fiber (OPF) for hydrogen production: parametric investigation. Energy Convers Manag 115:232–243

    Article  CAS  Google Scholar 

  • Ibarra J, Munoz E, Moliner R (1996) FTIR study of the evolution of coal structure during the coalification process. Org Geochem 24:725–735

    Article  CAS  Google Scholar 

  • Islam MS, Kao N, Bhattacharya SN, Gupta R, Choi HJ (2017) Potential aspect of rice husk biomass in Australia for nanocrystalline cellulose production. Chin J Chem Eng

  • Jamari SS, Howse JR (2012) The effect of the hydrothermal carbonization process on palm oil empty fruit bunch. Biomass Bioenergy 47:82–90

    Article  CAS  Google Scholar 

  • Kang S, Li X, Fan J, Chang J (2012) Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal. Ind Eng Chem Res 51:9023–9031

    Article  CAS  Google Scholar 

  • Kannan S, Gariepy Y, Raghavan GV (2017a) Optimization and characterization of hydrochar derived from shrimp waste. Energy Fuel 31:4068–4077

    Article  CAS  Google Scholar 

  • Kannan S, Gariepy Y, Raghavan GV (2017b) Optimization and characterization of hydrochar produced from microwave hydrothermal carbonization of fish waste. Waste Manag 65:159–168

    Article  CAS  Google Scholar 

  • Li W, Yang K, Peng J, Zhang L, Guo S, Xia H (2008) Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Ind Crop Prod 28:190–198

    Article  CAS  Google Scholar 

  • Li M-F, Shen Y, Sun J-K, Bian J, Chen C-Z, Sun R-C (2015) Wet torrefaction of bamboo in hydrochloric acid solution by microwave heating. ACS Sustain Chem Eng 3:2022–2029

    Article  CAS  Google Scholar 

  • Lin L, Zhai S-R, Xiao Z-Y, Song Y, An Q-D, Song X-W (2013) Dye adsorption of mesoporous activated carbons produced from NaOH-pretreated rice husks. Bioresour Technol 136:437–443

    Article  CAS  Google Scholar 

  • Lin H, Wang S, Zhang L, Ru B, Zhou J, Luo Z (2017) Structural evolution of chars from biomass components pyrolysis in a xenon lamp radiation reactor. Chin J Chem Eng 25:232–237

    Article  CAS  Google Scholar 

  • Liu Y, X-z Y, H-j H, X-l W, Wang H, G-m Z (2013) Thermochemical liquefaction of rice husk for bio-oil production in mixed solvent (ethanol–water). Fuel Process Technol 112:93–99

    Article  CAS  Google Scholar 

  • Liu F, Yu R, Guo M (2017) Hydrothermal carbonization of forestry residues: influence of reaction temperature on holocellulose-derived hydrochar properties. J Mater Sci 52:1736–1746

    Article  CAS  Google Scholar 

  • Lua AC, Yang T (2004) Effects of vacuum pyrolysis conditions on the characteristics of activated carbons derived from pistachio-nut shells. J Colloid Interface Sci 276:364–372

    Article  CAS  Google Scholar 

  • Maeda RN, Serpa VI, Rocha VAL, Mesquita RAA, Santa Anna LMM, De Castro AM, Driemeier CE, Pereira N, Polikarpov I (2011) Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochem 46:1196–1201

    Article  CAS  Google Scholar 

  • Manyà JJ, Ruiz J, Arauzo J (2007) Some peculiarities of conventional pyrolysis of several agricultural residues in a packed bed reactor. Ind Eng Chem Res 46:9061–9070

    Article  Google Scholar 

  • Marx S, Chiyanzu I, Piyo N (2014) Influence of reaction atmosphere and solvent on biochar yield and characteristics. Bioresour Technol 164:177–183

    Article  CAS  Google Scholar 

  • Nakason K, Panyapinyopol B, Kanokkantapong V, Viriya-empikul N, Kraithong W, Pavasant P (2017) Hydrothermal carbonization of unwanted biomass materials: effect of process temperature and retention time on hydrochar and liquid fraction. J Energy Inst

  • Nizamuddin S, Mubarak N, Tiripathi M, Jayakumar N, Sahu J, Ganesan P (2016) Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell. Fuel 163:88–97

    Article  CAS  Google Scholar 

  • Pang J, Zheng M, Wang A, Sun R, Wang H, Jiang Y, Zhang T (2014) Catalytic conversion of concentrated miscanthus in water for ethylene glycol production. AICHE J 60:2254–2262

    Article  CAS  Google Scholar 

  • Renmin W, Chan L, Jingliang L, Fang Y, Jianpei G, Xuejun P (2012) Pressured microwave-assisted hydrolysis of crude glycyrrhizic acid for preparation of glycyrrhetinic acid. Chin J Chem Eng 20:152–157

    Article  Google Scholar 

  • Rogalinski T, Ingram T, Brunner G (2008) Hydrolysis of lignocellulosic biomass in water under elevated temperatures and pressures. J Supercrit Fluids 47:54–63

    Article  CAS  Google Scholar 

  • Román S, Nabais J, Laginhas C, Ledesma B, González J (2012) Hydrothermal carbonization as an effective way of densifying the energy content of biomass. Fuel Process Technol 103:78–83

    Article  Google Scholar 

  • Sinan N, Unur E (2017) Hydrothermal conversion of lignocellulosic biomass into high-value energy storage materials. J Energy Chem

  • Tripathi M, Sahu J, Ganesan P, Jewaratnam J (2016) Thermophysical characterization of oil palm shell (OPS) and OPS char synthesized by the microwave pyrolysis of OPS. Appl Therm Eng 105:605–612

    Article  Google Scholar 

  • Uras U (2011) Biochar from vacuum pyrolysis of agricultural residues: characterisation and its applications. Stellenbosch University, Stellenbosch

    Google Scholar 

  • Uzun BB, Apaydin-Varol E, Ateş F, Özbay N, Pütün AE (2010) Synthetic fuel production from tea waste: characterisation of bio-oil and bio-char. Fuel 89:176–184

    Article  CAS  Google Scholar 

  • Várhegyi G, Szabó P, Till F, Zelei B, Antal MJ, Dai X (1998) TG, TG-MS, and FTIR characterization of high-yield biomass charcoals. Energy Fuel 12:969–974

    Article  Google Scholar 

  • Wang L, Guo Y, Zhu Y, Li Y, Qu Y, Rong C, Ma X, Wang Z (2010) A new route for preparation of hydrochars from rice husk. Bioresour Technol 101:9807–9810

    Article  CAS  Google Scholar 

  • Zhang L, Wang Q, Wang B, Yang G, Lucia LA, Chen J (2015) Hydrothermal carbonization of corncob residues for hydrochar production. Energy Fuel 29:872–876

    Article  CAS  Google Scholar 

  • Zhang S, Chen T, Xiong Y, Dong Q (2017) Effects of wet torrefaction on the physicochemical properties and pyrolysis product properties of rice husk. Energy Convers Manag 141:403–409

    Article  CAS  Google Scholar 

  • Zhao P, Shen Y, Ge S, Yoshikawa K (2014) Energy recycling from sewage sludge by producing solid biofuel with hydrothermal carbonization. Energy Convers Manag 78:815–821

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sabzoi Nizamuddin or Nabisab Mujawar Mubarak.

Additional information

Responsible editor: Philippe Garrigues

Highlights

• Rice husk was effectively converted into high energy hydrochar after microwave HTC.

• Lower temperature, lower time, lower biomass to water ratio, and higher particle size produce higher hydrochar yield.

• The HHV of the hydrochar is comparable to brown coal.

• The pores were formed on the surface of the hydrochar.

• The hydrochar can be potentially utilized for energy, adsorption, and agriculture applications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nizamuddin, S., Siddiqui, M.T.H., Baloch, H.A. et al. Upgradation of chemical, fuel, thermal, and structural properties of rice husk through microwave-assisted hydrothermal carbonization. Environ Sci Pollut Res 25, 17529–17539 (2018). https://doi.org/10.1007/s11356-018-1876-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1876-7

Keywords

Navigation