Environmental Science and Pollution Research

, Volume 25, Issue 17, pp 16729–16742 | Cite as

UVΑ pre-irradiation to P25 titanium dioxide nanoparticles enhanced its toxicity towards freshwater algae Scenedesmus obliquus

  • Barsha Roy
  • Hemamalini Chandrasekaran
  • Suresh Palamadai KrishnanEmail author
  • Natarajan Chandrasekaran
  • Amitava MukherjeeEmail author
Research Article


There has recently been an increase in the usage of TiO2 nanoparticles (NPs). P25 TiO2 NPs, a mixture of anatase and rutile phase in 3:1 ratio, are generally used for photocatalytic applications because both phases exhibit a synergistic effect on the photocatalytic activity of the TiO2 NPs. In the present study, increased toxicity of UVA-pre-irradiated P25 TiO2 NPs on freshwater algae Scenedesmus obliquus was assessed under visible light and dark exposure conditions at actual low concentrations (0.3, 3 and 35 μM of Ti). Photocatalytic property of P25 TiO2 NPs caused disaggregation of UVA-pre-irradiated NPs, thus significantly decreasing the mean hydrodynamic diameter (MHD) (188.74 ± 0.54 nm) than that of non-irradiated NPs (232.26 ± 0.44). This decrease in diameter of UVA-pre-irradiated NPs may increase its biological activity towards algal samples. All concentrations of pre-irradiated NPs, under both light and dark conditions, showed a significantly lesser cell viability (p < 0.001) when compared with non-irradiated NPs. Increased production of ROS, antioxidant enzymes and lipid peroxidation supported the viability data. Higher exopolysaccharide production and more nuclear damage were observed for pre-irradiated NPs. NP uptake was also more for the pre-irradiated NPs on treated samples when compared with non-irradiated NPs on treated samples, which, in turn, established the higher toxic potential of UVA-pre-irradiated TiO2 NPs. This study improves our understanding of the toxic effects of UVA-pre-irradiated TiO2 NPs on freshwater algae, thereby emphasising the need for ecological risk assessments of metal oxide nanoparticles in a natural experimental medium.


P25 TiO2 NPs Photocatalytic effects UVA pre-irradiation Mean hydrodynamic diameter Freshwater algae Exposure conditions ROS 



We are thankful to VIT, Vellore, for the transmission electron microscopy facility.

Author contribution

BR, AM and SPK designed the experiments. Experiments were performed by BR and HC. BR, SPK, NC and AM worked on the data analysis. BR, SPK and AM wrote the paper. All the authors read and approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2018_1860_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1293 kb)


  1. Aebi H (1974): Catalase. Methods of enzymatic analysis, 673–677Google Scholar
  2. Ahmed B, Dwivedi S, Abdin MZ, Azam A, Al-Shaeri M, Khan MS, Saquib Q, Al-Khedhairy AA, Musarrat J (2017) Mitochondrial and chromosomal damage induced by oxidative stress in Zn2+ ions, ZnO-bulk and ZnO-NPs treated Allium cepa roots. Sci Rep 7:40685CrossRefGoogle Scholar
  3. Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341CrossRefGoogle Scholar
  4. Aruoja V, Dubourguier H-C, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468CrossRefGoogle Scholar
  5. Barhoumi L, Dewez D (2013) Toxicity of superparamagnetic iron oxide nanoparticles on green alga Chlorella vulgaris. Biomed Res Int 2013:1–11CrossRefGoogle Scholar
  6. Bellinger EG, Sigee DC (2015): Freshwater algae: identification and use as bioindicators. John Wiley & SonsGoogle Scholar
  7. Bhaduri AM, Fulekar M (2012) Antioxidant enzyme responses of plants to heavy metal stress. Rev Environ Sci Biotechnol 11:55–69CrossRefGoogle Scholar
  8. Boyoglu C, Boyoglu-Barnum S, Soni S, He Q, Willing G, Miller M, Singh S (2012): Nanotechnology 2011: bio sensors, instruments, medical, environment and energy. Nano Science and Technology Institute, 489–492Google Scholar
  9. Daimon T, Nosaka Y (2007) Formation and behavior of singlet molecular oxygen in TiO2 photocatalysis studied by detection of near-infrared phosphorescence. J Phys Chem C 111:4420–4424CrossRefGoogle Scholar
  10. Dalai S, Pakrashi S, Kumar RS, Chandrasekaran N, Mukherjee A (2012) A comparative cytotoxicity study of TiO2 nanoparticles under light and dark conditions at low exposure concentrations. Toxicol Res 1:116–130CrossRefGoogle Scholar
  11. Dalai S, Pakrashi S, Nirmala MJ, Chaudhri A, Chandrasekaran N, Mandal A, Mukherjee A (2013) Cytotoxicity of TiO2 nanoparticles and their detoxification in a freshwater system. Aquat Toxicol:138, 1–138,11Google Scholar
  12. Diffey BL (2002) Sources and measurement of ultraviolet radiation. Methods 28:4–13CrossRefGoogle Scholar
  13. Gao X, Zhou K, Zhang L, Yang K, Lin D (2018) Distinct effects of soluble and bound exopolymeric substances on algal bioaccumulation and toxicity of anatase and rutile TiO2 nanoparticles. Environ Sci: NanoGoogle Scholar
  14. Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81:1253–1262CrossRefGoogle Scholar
  15. Gokhale S (2015) Effects of engineered nanomaterials released into the atmosphere. J Hazard, Toxic, Radioact Waste 20:B4015005CrossRefGoogle Scholar
  16. Gondikas AP, Kammer FVD, Reed RB, Wagner S, Ranville JF, Hofmann T (2014) Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the old Danube recreational lake. Environ Sci Technol 48:5415–5422CrossRefGoogle Scholar
  17. Gong N, Shao K, Feng W, Lin Z, Liang C, Sun Y (2011) Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere 83:510–516CrossRefGoogle Scholar
  18. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222CrossRefGoogle Scholar
  19. Gunawan C, Sirimanoonphan A, Teoh WY, Marquis CP, Amal R (2013) Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii. J Hazard Mater 260:984–992CrossRefGoogle Scholar
  20. Hirakawa K, Hirano T (2006) Singlet oxygen generation photocatalyzed by TiO2 particles and its contribution to biomolecule damage. Chem Lett 35:832–833CrossRefGoogle Scholar
  21. Iswarya V, Bhuvaneshwari M, Alex SA, Iyer S, Chaudhuri G, Chandrasekaran PT, Bhalerao GM, Chakravarty S, Raichur AM, Chandrasekaran N (2015) Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp. Aquat Toxicol 161:154–169CrossRefGoogle Scholar
  22. Janknegt PJ, De Graaff CM, Van de Poll WH, Visser RJ, Rijstenbil JW, Buma AG (2009) Short-term antioxidative responses of 15 microalgae exposed to excessive irradiance including ultraviolet radiation. Eur J Phycol 44:525–539CrossRefGoogle Scholar
  23. Kägi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156:233–239CrossRefGoogle Scholar
  24. Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967CrossRefGoogle Scholar
  25. Lee W-M, An Y-J (2013) Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation. Chemosphere 91:536–544CrossRefGoogle Scholar
  26. Li M, Chong Y, Fu PP, Xia Q, Croley TR, Lo YM, Yin J-J (2017) Effects of P25 TiO2 nanoparticles on free radical scavenging ability of antioxidants when exposed to simulated sunlight. J Agricult Food ChemGoogle Scholar
  27. Liao H, Reitberger T (2013) Generation of free OHaq radicals by black light illumination of Degussa (Evonik) P25 TiO2 aqueous suspensions. Catalysts 3:418–443CrossRefGoogle Scholar
  28. Luis A, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141:330–335CrossRefGoogle Scholar
  29. Luo Z, Poyraz AS, Kuo C-H, Miao R, Meng Y, Chen S-Y, Jiang T, Wenos C, Suib SL (2015) Crystalline mixed phase (anatase/rutile) mesoporous titanium dioxides for visible light photocatalytic activity. Chem Mater 27:6–17CrossRefGoogle Scholar
  30. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S-I, Lee YC (2005) Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal Biochem 339:69–72CrossRefGoogle Scholar
  31. Melegari SP, Perreault F, Costa RHR, Popovic R, Matias WG (2013) Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquat Toxicol 142:431–440CrossRefGoogle Scholar
  32. Metzler DM, Li M, Erdem A, Huang C (2011) Responses of algae to photocatalytic nano-TiO2 particles with an emphasis on the effect of particle size. Chem Eng J 170:538–546CrossRefGoogle Scholar
  33. Miao A-J, Schwehr KA, Xu C, Zhang S-J, Luo Z, Quigg A, Santschi PH (2009) The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157:3034–3041CrossRefGoogle Scholar
  34. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao A-J, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386CrossRefGoogle Scholar
  35. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  36. No OT (2011) 201: freshwater alga and cyanobacteria, growth inhibition test. OECD guidelines for the testing of chemicals, section 2. OECD, ParisGoogle Scholar
  37. Petersen EJ, Henry TB, Zhao J, MacCuspie RI, Kirschling TL, Dobrovolskaia MA, Hackley V, Xing B, White JC (2014) Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements. Environ Sci Technol 48:4226–4246CrossRefGoogle Scholar
  38. Petit A-N, Eullaffroy P, Debenest T, Gagné F (2010) Toxicity of PAMAM dendrimers to Chlamydomonas reinhardtii. Aquat Toxicol 100:187–193CrossRefGoogle Scholar
  39. Pinto E, Sigaud-kutner T, Leitao MA, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018CrossRefGoogle Scholar
  40. Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka E, Godlewska-Żyłkiewicz B (2012) Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol Biochem 52:52–65CrossRefGoogle Scholar
  41. Roy R, Parashar A, Bhuvaneshwari M, Chandrasekaran N, Mukherjee A (2016) Differential effects of P25 TiO2 nanoparticles on freshwater green microalgae: Chlorella and Scenedesmus species. Aquat Toxicol 176:161–171CrossRefGoogle Scholar
  42. Sadiq IM, Pakrashi S, Chandrasekaran N, Mukherjee A (2011) Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. J Nano Res 13:3287-3299Google Scholar
  43. Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113:1904–2074CrossRefGoogle Scholar
  44. Schiavo S, Oliviero M, Miglietta M, Rametta G, Manzo S (2016) Genotoxic and cytotoxic effects of ZnO nanoparticles for Dunaliella tertiolecta and comparison with SiO2 and TiO2 effects at population growth inhibition levels. Sci Total Environ 550:619–627CrossRefGoogle Scholar
  45. Sendra M, Moreno-Garrido I, Yeste M, Gatica J, Blasco J (2017) Toxicity of TiO2, in nanoparticle or bulk form to freshwater and marine microalgae under visible light and UV-A radiation. Environ Pollut 227:39–48CrossRefGoogle Scholar
  46. Shockman GD (1965) Symposium on the fine structure and replication of bacteria and their parts. IV. Unbalanced cell-wall synthesis: autolysis and cell-wall thickening. Bacteriol Rev 29:345Google Scholar
  47. Simon-Deckers A, Loo S, Mayne-L’hermite M, Herlin-Boime N, Menguy N, Reynaud C, Gouget B, Carriere M (2009) Size-, composition-and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 43:8423–8429CrossRefGoogle Scholar
  48. Soldo D, Hari R, Sigg L, Behra R (2005) Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Aquat Toxicol 71:307–317CrossRefGoogle Scholar
  49. Sun TY, Gottschalk F, Hungerbühler K, Nowack B (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76CrossRefGoogle Scholar
  50. Terashima M, Nagao S (2007) Solubilization of [60]fullerene in water by aquatic humic substances. Chem Lett 36:302–303CrossRefGoogle Scholar
  51. Vandermoere F, Blanchemanche S, Bieberstein A, Marette S, Roosen J (2011) The public understanding of nanotechnology in the food domain: the hidden role of views on science, technology, and nature. Public Underst Sci 20:195–206CrossRefGoogle Scholar
  52. Wang J, Wang W-X (2014) Significance of physicochemical and uptake kinetics in controlling the toxicity of metallic nanomaterials to aquatic organisms. J Zhejiang Univ Sci A 15:573–592CrossRefGoogle Scholar
  53. Wang J, Zhang X, Chen Y, Sommerfeld M, Hu Q (2008) Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere 73:1121–1128CrossRefGoogle Scholar
  54. Weir A, Westerhoff P, Fabricius L, Hristovski K, Von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250CrossRefGoogle Scholar
  55. Winterbourn CC, Hawkins RE, Brian M, Carrell R (1975) The estimation of red cell superoxide dismutase activity. Transl Res 85:337–341Google Scholar
  56. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134CrossRefGoogle Scholar
  57. Xiao R, Zheng Y (2016) Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol Adv 34:1225–1244CrossRefGoogle Scholar
  58. Yilancioglu K, Cokol M, Pastirmaci I, Erman B, Cetiner S (2014) Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain. PLoS One 9:e91957CrossRefGoogle Scholar
  59. Yin J-J, Liu J, Ehrenshaft M, Roberts JE, Fu PP, Mason RP, Zhao B (2012) Phototoxicity of nano titanium dioxides in HaCaT keratinocytes—generation of reactive oxygen species and cell damage. Toxicol Appl Pharmacol 263:81–88CrossRefGoogle Scholar
  60. Zhou G-J, Peng F-Q, Zhang L-J, Ying G-G (2012) Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. Environ Sci Pollut Res 19:2918–2929CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Biosciences and TechnologyVITVelloreIndia
  2. 2.Centre for NanobiotechnologyVITVelloreIndia

Personalised recommendations