Environmental Science and Pollution Research

, Volume 25, Issue 17, pp 16767–16775 | Cite as

Identification and quantitation of semi-crystalline microplastics using image analysis and differential scanning calorimetry

  • Mauricio Rodríguez Chialanza
  • Ignacio Sierra
  • Andrés Pérez Parada
  • Laura Fornaro
Research Article


There are several techniques used to analyze microplastics. These are often based on a combination of visual and spectroscopic techniques. Here we introduce an alternative workflow for identification and mass quantitation through a combination of optical microscopy with image analysis (IA) and differential scanning calorimetry (DSC). We studied four synthetic polymers with environmental concern: low and high density polyethylene (LDPE and HDPE, respectively), polypropylene (PP), and polyethylene terephthalate (PET). Selected experiments were conducted to investigate (i) particle characterization and counting procedures based on image analysis with open-source software, (ii) chemical identification of microplastics based on DSC signal processing, (iii) dependence of particle size on DSC signal, and (iv) quantitation of microplastics mass based on DSC signal. We describe the potential and limitations of these techniques to increase reliability for microplastic analysis. Particle size demonstrated to have particular incidence in the qualitative and quantitative performance of DSC signals. Both, identification (based on characteristic onset temperature) and mass quantitation (based on heat flow) showed to be affected by particle size. As a result, a proper sample treatment which includes sieving of suspended particles is particularly required for this analytical approach.


Microplastics Image analysis Thermal analysis DSC 



Heinkel Bentos Pereira is acknowledged for the construction of PVC sieving system.

Funding information

Authors acknowledge founding from Programa de Desarrollo de Ciencias Básicas (PEDECIBA) and Cristalpet and Nicoll (Montevideo, Uruguay) for supplying plastics samples.

Supplementary material

11356_2018_1846_MOESM1_ESM.docx (733 kb)
ESM 1 (DOCX 733 kb)


  1. Bergmann M, Gutow L, Klages M et al (2015) Marine Anthropogenic Litter. Mar Anthropog Litter 1–447.
  2. Callister WD, Rethwisch D (2015a) Polymer crystallinity. In: Materials science and engineering. An Introduction. Edn. John Wiley & Sons, Hoboken, p 510Google Scholar
  3. Callister WD, Rethwisch D (2015b) Properties of selected engineering materials - apendix B. In: Materials science and engineering. Wiley, p 848Google Scholar
  4. Castañeda RA, Avlijas S, Simard MA, Ricciardi A (2014) Microplastic pollution in St Lawrence River sediments. Can J Fish Aquat Sci 71:1767–1771CrossRefGoogle Scholar
  5. Claessens M, Van Cauwenberghe L, Vandegehuchte MB, Janssen CR (2013) New techniques for the detection of microplastics in sediments and field collected organisms. Mar Pollut Bull 70:227–233. CrossRefGoogle Scholar
  6. Duis K, Coors A (2016) Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environ Sci Eur 28:2. CrossRefGoogle Scholar
  7. Dümichen E, Barthel A-K, Braun U, Bannick CG, Brand K, Jekel M, Senz R (2015) Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Res 85:451–457. CrossRefGoogle Scholar
  8. Dumitraş M, Odochian L (2002) Study on the influence of PTFE particle size on the polymer thermal behavior. I. Melting. J Therm Anal Calorim 69:599–606. CrossRefGoogle Scholar
  9. Ellison SLR, Williams A (eds) (2012) Eurachem/CITAC guide: quantifying uncertainty in analytical measurement, third edition. Available from
  10. Filella M (2015) Questions of size and numbers in environmental research on microplastics: methodological and conceptual aspects. Environ Chem 12:527–538. CrossRefGoogle Scholar
  11. Fries E, Dekiff JH, Willmeyer J, Nuelle MT, Ebert M, Remy D (2013) Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ Sci Process Impacts 15:1949–1956. CrossRefGoogle Scholar
  12. Gewert B, Ogonowski M, Barth A, MacLeod M (2017) Abundance and composition of near surface microplastics and plastic debris in the Stockholm Archipelago, Baltic Sea. Mar Pollut Bull 120:292–302. CrossRefGoogle Scholar
  13. Gmelin E, Sarge SM (1995) Calibration of differential scanning calorimeters. Pure Appl Chem 67:1789–1800. CrossRefGoogle Scholar
  14. Gmelin E, Sarge SM (2000) Temperature, heat and heat flow rate calibration of differential scanning calorimeters. Thermochim Acta 347:9–13. CrossRefGoogle Scholar
  15. Hanvey J, Lewis P, Lavers J et al (2016) A review of analytical techniques for quantifying microplastics in sediments. Anal Methods 9:1369–1383. CrossRefGoogle Scholar
  16. Harrison JP, Ojeda JJ, Romero-González ME (2012) The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments. Sci Total Environ 416:455–463. CrossRefGoogle Scholar
  17. Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M (2013) Microplastics in the marine environment: a review of the methods used for identification and quantification. Sci Technol 46:3060–3075. CrossRefGoogle Scholar
  18. Höhne G, Hemminger W Flammersheim H-J (2003a) Calibration of differencial scanning calorimetry. In: Differential scanning calorimetry, edn. Springer, Berlin, p 90Google Scholar
  19. Höhne G, Hemminger W, Flammersheim HJ (2003b) The baseline and the determination of peak areas (enthalpy differences). In: Differential scanning calorimetry, edn. Springer, Berlin, p 121Google Scholar
  20. Isobe A, Uchiyama-matsumoto K, Uchida K, Tokai T (2017) Microplastics in the Southern Ocean. MPB 114:623–626. Google Scholar
  21. Käppler A, Windrich F, Löder MGJ, Malanin M, Fischer D, Labrenz M, Eichhorn KJ, Voit B (2015) Identification of microplastics by FTIR and Raman microscopy: a novel silicon filter substrate opens the important spectral range below 1300 cm−1 for FTIR transmission measurements. Anal Bioanal Chem 407:6791–6801. CrossRefGoogle Scholar
  22. Kurajica S, Bezjak A, Tkal~ec E (1996) Resolution of overlapping peaks and the determination of kinetic parameters for the crystallization of multicomponent system from DTA or DSC curves: I. Non-isothermal kinetics. Thermochim Acta 288:123–135CrossRefGoogle Scholar
  23. Lenz R, Enders K, Stedmon CA, Mackenzie DMA, Nielsen TG (2015) A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar Pollut Bull 100:82–91. CrossRefGoogle Scholar
  24. Löder MGJ, Gerdts G (2015) Methodology used for the detection and identification of microplastics—a critical appraisal. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer International Publishing, Cham, pp 201–227CrossRefGoogle Scholar
  25. Majewsky M, Bitter H, Eiche E, Horn H (2016) Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). Sci Total Environ 568:507–511. CrossRefGoogle Scholar
  26. Masura J, Baker J, Foster G et al (2015) Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments. Available at:
  27. Ozawa T (1966) A new method of quantitative differential thermal analysis. Bull Chem Soc Jpn 39:2071–2085. CrossRefGoogle Scholar
  28. Provencher J, Bond A, Aver-Gomm S et al (2016) Quantifying ingested debris in marine megafauna: a review and recommendations for standardization. Anal Methods:1454–1469.
  29. Rocha-Santos T, Duarte AC (2015) A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. TrAC Trends Anal Chem 65:47–53. CrossRefGoogle Scholar
  30. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Meth 9:676–682CrossRefGoogle Scholar
  31. Seijo RA, Pereira R (2017) Morphological and physical characterization of microplastics. In: TAP R-S, Duarte AC (eds) Characterization and Analysis of Microplastics. Elsevier, pp 49–66Google Scholar
  32. Shim WJ, Hong SH, Eo S (2017) Identification methods in microplastic analysis: a review. Anal Methods 9:1384–1391. CrossRefGoogle Scholar
  33. Speyer RF (1993) Deconvolution of superimposed DTA/DSC peaks using the simplex algorithm. J Mater Res 8:675–679. CrossRefGoogle Scholar
  34. Tagg AS, Sapp M, Harrison JP, Ojeda JJ (2015) Identification and quantification of microplastics in wastewater using focal plane Array-based reflectance micro-FT-IR imaging. Anal Chem 87:6032–6040. CrossRefGoogle Scholar
  35. ter Halle A, Ladirat L, Martignac M, Mingotaud AF, Boyron O, Perez E (2017) To what extent are microplastics from the open ocean weathered? Environ Pollut 227:167–174. CrossRefGoogle Scholar
  36. Vandermeersch G, Van Cauwenberghe L, Janssen CR et al (2015) A critical view on microplastic quantification in aquatic organisms. Environ Res 143(Part):46–55. CrossRefGoogle Scholar
  37. Viršek MK, Palatinus A, Koren Š et al (2016) Protocol for microplastics sampling on the sea surface and sample analysis. J Vis Exp 118:1–9. Google Scholar
  38. von Moos N, Burkhardt-Holm P, Köhler A (2012) Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ Sci Technol 46:11327–11335. CrossRefGoogle Scholar
  39. Vyazovkin S (2002) Thermal analysis. Anal Chem 74:2749–2762. CrossRefGoogle Scholar
  40. Wendlandt WW (1986a) Applications of differential thermal analysis and differential scanning calorimetry. I. Application to polymers. In: Thermal analysis, 3er edn. John Wiley & Sons, New York, p 425 Google Scholar
  41. Wendlandt WW (1986b) ​Differential thermal analysis and differential scanning calorimetry. A. Basic principles of DTA/DSC. In: Thermal analysis, 3er edn. John Wiley & Sons, New York, p 213Google Scholar
  42. Wendlandt WW (1986c) Differential thermal analysis and differential scanning calorimetry. B. Quantitative aspects. In: Thermal qnalysis, 3er edn. John Wiley & Sons, New York, p 269Google Scholar
  43. World Economic Forum (2016) The new plastics economy: rethinking the future of plastics. Accessed 26 Mar 2018

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro Universitario Regional del Este (CURE), Universidad de la República (UdelaR)RochaUruguay
  2. 2.Departamento de Desarrollo Tecnológico – DDT, Centro Universitario Regional del Este (CURE)Universidad de la República (UdelaR)RochaUruguay

Personalised recommendations