Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 17, pp 16325–16343 | Cite as

Life cycle of PCBs and contamination of the environment and of food products from animal origin

  • Roland Weber
  • Christine Herold
  • Henner Hollert
  • Josef Kamphues
  • Linda Ungemach
  • Markus Blepp
  • Karlheinz Ballschmiter
PCBs Risk Evaluation and Environmental Protection

Abstract

This report gives a summary of the historic use, former management and current release of polychlorinated biphenyls (PCBs) in Germany and assesses the impact of the life cycle of PCBs on the contamination of the environment and of food products of animal origin. In Germany 60,000 t of PCBs were used in transformers, capacitors or as hydraulic oils. The use of PCB oils in these “closed applications”, has been banned in Germany in 2000. Thirty to 50% of these PCBs were not appropriately managed. In West Germany, 24,000 t of PCBs were used in open applications, mainly as additive (plasticiser, flame retardant) in sealants and paints in buildings and other construction. The continued use in open applications has not been banned, and in 2013, an estimated more than 12,000 t of PCBs were still present in buildings and other constructions. These open PCB applications continuously emit PCBs into the environment with an estimated release of 7–12 t per year. This amount is in agreement with deposition measurements (estimated to 18 t) and emission estimates for Switzerland. The atmospheric PCB releases still have an relevant impact on vegetation and livestock feed. In addition, PCBs in open applications on farms are still a sources of contamination for farmed animals. Furthermore, the historic production, use, recycling and disposal of PCBs have contaminated soils along the lifecycle. This legacy of contaminated soils and contaminated feed, individually or collectively, can lead to exceedance of maximum levels in food products from animals. In beef and chicken, soil levels of 5 ng PCB-TEQ/kg and for chicken with high soil exposure even 2 ng PCB-TEQ/kg can lead to exceedance of EU limits in meat and eggs. Areas at and around industries having produced or used or managed PCBs, or facilities and areas where PCBs were disposed need to be assessed in respect to potential contamination of food-producing animals. For a large share of impacted land, management measures applicable on farm level might be sufficient to continue with food production. Open PCB applications need to be inventoried and better managed. Other persistent and toxic chemicals used as alternatives to PCBs, e.g. short chain chlorinated paraffins (SCCPs), should be assessed in the life cycle for exposure of food-producing animals and humans.

Keywords

Polychlorinated biphenyls Open application Contaminated sites Soil, feed PCB inventory Cattle Beef Chicken 

Notes

Acknowledgements

A part of the information compilation was financed by a R&D project of the German Environment Agency FKZ 3712 65 407/01. We appreciate the project support of Dr. Gerlinde Knetsch, Janek Kubelt and Prof. Adolf Eisenträger from the German Environment Agency.

References

  1. Anezaki K, Kannan N, Nakano T (2014) Polychlorinated biphenyl contamination of paints containing polycyclic- and Naphthol AS-type pigments. Environ Sci Pollut Res Int.  https://doi.org/10.1007/s11356-014-2985-2986
  2. Astebro A, Jansson B, Bergström U (2000) Emissions during replacement of PCB containing sealants—a case study, Organohalogen Compd 46. http://www.dioxin20xx.org/pdfs/2000/00-21.pdf
  3. ATSDR (Agency for Toxic Substances & Disease Registry) 2015 Anniston Community Health Survey. https://www.atsdr.cdc.gov/sites/anniston_community_health_survey/overview.html
  4. BaslerA (2009) Evaluierung des Forschungsbedarfs zur Ursachenaufklärung der Kontamination bestimmter Lebensmittel mit Dioxinen und PCB. Förderkennzeichen (UFOPLAN) 370963224Google Scholar
  5. Bell L, Weber R, De Borst B, PaunMC, HoloubekI, WatsonA, Vijgen J (2016) Assessment of POPs contaminated sites and the need for stringent soil standards for food and feed safety. Working document for UNEP Dioxin Toolkit and BAT/BEP group. October2016Google Scholar
  6. Berliner Zeitung (1994) Brände und Explosionen brachten Gift und Tod. Ausgabe02.03.1994Google Scholar
  7. BfR German Federal Institute for Risk Assessment (2008) Vorgeschlagene EU-Höchstgehalte für nicht dioxinähnliche polychlorierte Biphenyle (ndl-PCB) sind noch immer zu hoch, Aktualisierte Stellungnahme Nr. 029/2008 des Bundesinstituts für Risikobewertung (BfR). http://www.bfr.bund.de/cm/343/vorgeschlagene_eu_hoechstgehalte_fuer_nicht_dioxinaehnliche_polychlorierte_biphenyle_nd_pcb_sind_noch_immer_zu_hoch.pdf
  8. BfR German Federal Institute for Risk Assessment (2010) Aufnahme von Umweltkontaminanten über Lebensmittel, Ergebnisse des Forschungsprojektes LExUKon, Bundesinstitut für Risikobewertung (BfR), 2010. http://www.bfr.bund.de/cm/350/aufnahme_von_umweltkontaminanten_ueber_lebensmittel.pdf
  9. BfR German Federal Institute for Risk Assessment (2011) Dioxin- und PCB-Gehalte in Wild stellen keine Gesundheitsgefahr dar, Stellungnahme Nr. 048/2011 des BfR vom 16. Mai 2011, http://www.bfr.bund.de/cm/343/dioxin-und-pcb-gehalte-in-wild-stellen-keinegesundheitsgefahr-dar.pdf
  10. BMU (2004) PCB-Ausstieg in Deutschland fast abgeschlossen, Pressemitteilung 174/04, ehemaliges Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit. http://www.bmub.bund.de/pressemitteilung/pcb-ausstieg-in-deutschland-fast-abgeschlossen
  11. BMU (Bundesministerium für Umwelt, Naturschutz, und Reaktorsicherheit)2013Umweltschutz—Standbein der Lebensmittelsicherheit—Dioxin- und PCB-Einträge vermeiden. 5. aktualisierte Auflage, Januar 2013Google Scholar
  12. Bogdal C, Müller CE, Buser AM, Wang Z, Scheringer M, Gerecke AC, Schmid P, Zennegg M, MacLeod M, Hungerbühler K (2014) Emissions of polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans during 2010 and 2011 in Zurich, Switzerland. Environ Sci Technol 48:482–490CrossRefGoogle Scholar
  13. Bräuner EV, Andersen ZJ, Frederiksen M, Specht IO, Hougaard KS, Ebbehøj N et al (2016) Health Effects of PCBs in Residences and Schools (HESPERUS): PCB–health cohort profile. Sci Rep 6Google Scholar
  14. Breivik K, Sweetman A, Pacyna JM, Jones KC (2002) Towards a global historical emission inventory for selected PCB congeners—a mass balance approach: 2. Emissions. Sci Total Environ 290(1):199–224CrossRefGoogle Scholar
  15. Breivik K, Sweetman A, Pacyna JM, Jones KC (2007) Towards a global historical emission inventory for selected PCB congeners—a mass balance approach: 3. An update. Sci Total Environ 377(2):296–307CrossRefGoogle Scholar
  16. Bund/Länder-Arbeitsgruppe Dioxine (1992) Umweltpolitik—Eine Information des Bundesumweltministers. Rechtsnormen, Richtwerte, Handlungsempfehlungen, Messprogramme, Messwerte und ForschungsprogrammeGoogle Scholar
  17. Bundesanzeiger (1999) Bekanntmachung über Methoden und Maßstäbe für die Ableitung der Prüf- und Maßnahmenwerte nach der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) von 18 Juni 1999. Bundesanzeiger Nr. 161a v. 28/8/99Google Scholar
  18. BussianB, SchmidtS, UtermannJ (2013) Typische Gehalte von Dioxinen und dl-PCB in Böden, Fachgespräch „Dioxine und PCB: Bessere Daten—Schnellere Aufklärung“ Bonn 28.10.2013Google Scholar
  19. BUWAL (2000a) Praxishilfe. PCB-Emissionen beim Korrosionsschutz, Schweizer Bundesamt für Umwelt, Wald und Landschaft 2000Google Scholar
  20. BUWAL (2000b) BUWAL warnt vor nicht fachgerechten Sanierungen: PCB-Altlasten bilden ein Risiko für Mensch und Umwelt, Schweizer Bundesamt für Umwelt, Wald und LandschaftGoogle Scholar
  21. Csiszar SA, Daggupaty SM, Verkoeyen S, Giang A, Diamond ML (2013) SO-MUM: a coupled atmospheric transport and multimedia model used to predict intraurban-scale PCB and PBDE emissions and fate. Environ Sci Technol 47:436–445CrossRefGoogle Scholar
  22. CVUA Freiburg (2013a)Untersuchungsergebnisse zu Dioxinen und PCB— Email des Landratsamtes Emmendingen, Amt für Wasserwirtschaft und Bodenschutz vom 23.07.2013 mit der Bitte um Untersuchung von drei Fischproben aus dem Dammgraben der Elz im Rahmen der AmtshilfeGoogle Scholar
  23. CVUA Freiburg (2013b) Grasreferenzmessprogramm Baden-Württemberg. Bestimmung von PCB in Gras Heu- und Grassilageproben 9.8.2013Google Scholar
  24. Der Westen (2013) Komplette Freibad-Saison 2013 nach PCB-Fund bei „Hesse“ in Essen in Gefahr 20.03.2013. http://www.derwesten.de/staedte/essen/komplette-freibad-saison-2013-nachpcb-fund-bei-hessein-essen-in-gefahr-id7746360.html
  25. DetzelA, PatykA, FehrenbachH, Franke et al. (1998) Ermittlung von Emissionen und Minderungsmaßnahmen für persistente organische Schadstoffe in der Bundesrepublik Deutschland. FuE-Vorhaben 360 12 008, im Auftrag des Umweltbundesamtes. UBA-Texte 74/98. BerlinGoogle Scholar
  26. Deutscher Bundestag (1989) Antwort der Bundesregierung auf die Kleine Anfrage der Abgeordneten Frau Teubner, Frau Flinner, Frau Garbe, Kreuzeder und der Fraktion DIE GRÜNEN. Drucksache 1114276 —Drucksache 11/4352; 14.04.1989Google Scholar
  27. DG Sanco (2004) Guidelines for the enforcement of provisions on dioxins in the event non-compliance with the maximum levels for dioxins in food. https://www.fsai.ie/uploadedFiles/ECguidelines-july_2004.pdf
  28. Di Gangi J, PetrlíkJ (2005) The egg report—keep the promise eliminate POPs report. IPENGoogle Scholar
  29. Diefenbacher PS, Bogdal C, Gerecke AC, Glüge J, Schmid P, Scheringer M, Hungerbühler K (2015) Emissions of polychlorinated biphenyls in Switzerland: a combination of long-term measurements and modeling. Environ Sci Technol 49(4):2199–2206CrossRefGoogle Scholar
  30. Diefenbacher PS, Gerecke AC, Bogdal C, Hungerbühler K (2016) Spatial distribution of atmospheric PCBs in Zurich, Switzerland: do joint sealants still matter? Environ Sci Technol 50(1):232–239CrossRefGoogle Scholar
  31. Diletti G, Ceci R, Scortichini G, Migliorati G (2009) Dioxin levels in lifestock and grassland near a large industrial area in Taranto (Italy). Organohalogen Compds 71:2344–2348Google Scholar
  32. Diliberto JJ, Burgin DE, Birnbaum LS (1999) Effects of CYP1A2 on disposition of 2,3,7, 8-tetrachlorodibenzo-p-dioxin, 2,3,4,7,8-pentachlorodibenzofuran, and 2,2',4,4',5,5'-hexachlorobiphenyl in CYP1A2 knockout and parental (C57BL/6N and 129/Sv) strains of mice. Toxicol Appl Pharmacol 159(1):52–64Google Scholar
  33. EFSA European Food Safety Authority (2012) Update of the monitoring of levels of dioxins and PCBs in food and feed, European Food Safety Authority. EFSA J 10(7):2832.  https://doi.org/10.2903/j.efsa.2012.2832 Google Scholar
  34. EFSA European Food Safety Authority (2015) Scientific statement on the health-based guidance values for dioxins and dioxin-like PCBs, European Food Safety Authority. EFSA J 13(5):4124.  https://doi.org/10.2903/j.efsa.2015.4124 CrossRefGoogle Scholar
  35. Egsmose E, Bräuner EV, Frederiksen M, Mørck TA, Siersma VD, Hansen PW et al (2016) Associations between plasma concentrations of PCB 28 and possible indoor exposure sources in Danish school children and mothers. Environ Int 87:13–19CrossRefGoogle Scholar
  36. EMEP/EEA (2009) Atmospheric Emission Inventory Guidebook. http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009
  37. E-PRTR (2006) Europäisches Schadstofffreisetzungs- und -verbringungsregister, Verordnung Anhang II. http://www.thru.de/fileadmin/SITE_MASTER/content/Dokumente/Downloads/E_PRTR_VO_Anhang_II.pdf
  38. Esposito V, Maffei A, Castellano G, Martinelli W, Conversano M, Assenato G (2010) Dioxin levels in grazing land and groundwater in the surrounding of a large industrial area in Taranto (Italy). Organohalgen Compd 72:736–739Google Scholar
  39. Esposito V, Maffei A, Bruno D, Castellano G, Varvaglione B, Ficoceli S, Capoccia C, Spartera M, Giua R, Blonda M, Assenato G (2014) POPs Emission from a large sinter plant in Taranto (Italy) over a five-year period following enforcement of new legislation. Sci Total Environ 491–492, 118–122Google Scholar
  40. European Commission (2001) Communication from the Commission to the Council, the European Parliament and the Economic and Social Committee. Community Strategy for Dioxins, Furans and Polychlorinated Biphenyls, COM 593Google Scholar
  41. European Commission (2006) Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union L364:5Google Scholar
  42. European Commission (2011) Commission Regulation (EU) No 1259/2011 of 2 December 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for dioxins, dioxin-like PCBs and non dioxin-like PCBs in foodstuffs. Off J Eur Union L320:18–23Google Scholar
  43. European Commission (2014) Final Report Summary—SYSTEQ (the development, validation and implementation of human systemic Toxic Equivalencies (TEQs) as biomarkers for dioxin-like compounds). Project reference 226694Google Scholar
  44. Fantke P, Weber R, Scheringer M (2015) From incremental to fundamental substitution in chemical alternatives assessment. Sustain Chem Pharm 1:1–8CrossRefGoogle Scholar
  45. FAO (2006) Code of Practice for the Prevention and Reduction of Dioxin and Dioxin-like PCB Contamination in Food and Feeds. 1st ed. http://www.fao.org/ag/againfo/home/en/news_archive/2009_IN_dioxin.html
  46. Ferrante MC, Fusco G, Monnolo A, Saggiomo F, Guccione J, Mercogliano R, Clausi MT (2017) Food contamination by PCBs and waste disposal crisis: evidence from goat milk in Campania (Italy). Chemosphere 186:396–404CrossRefGoogle Scholar
  47. Fiedler H (2001) Existierende Dioxininventare weltweit und neue Methodik zur Erstellung von vergleichbaren und vollständigen Emissionsinventaren. Umweltwiss Schadst Forsch 13(2):88–94CrossRefGoogle Scholar
  48. Fiedler H, Hutzinger O, Welsch-Pausch K, Schmiedinger A (2000) Evaluation of the occurrence of PCDD/F and POPs in wastes and their potential to enter the foodchain. Study on behalf of the European Commission, DG Environment, 30. September 2000Google Scholar
  49. FilykG (2004) Information dossier for the reassessment of production and use of polychlorinated terphenyls (PCTs) under the United National Economic Commission for Europe protocol on persistent organic pollutants (POPs). http://www.unece.org/fileadmin/DAM/env/lrtap/TaskForce/popsxg/2004/Dossier_PCT.pdf
  50. Fonnum F, Paukstys B, Zeeb BA, Reimer KJ (1998) Environmental contamination and remediation practices at former and present military bases. Nato Science Partnership Subseries: 2.  https://doi.org/10.1007/978-94-011-5304-1
  51. Förstner U, Hollert H, Brinkmann M, Eichbaum K, Weber R, Salomons W (2016) Dioxin in the Elbe river basin: policy and science under the water framework directive 2000–2015 and toward 2021. Environ Sci Eur 28(1):9CrossRefGoogle Scholar
  52. Forter M (2000) Farbenspiel—ein Jahrhundert Umweltnutzung durch die Basler chemische Industrie. Chronos-Verlag, ZürichGoogle Scholar
  53. Gallistl C, Sprengel J, Vetter W (2018) High levels of medium-chain chlorinated paraffins and polybrominated diphenyl ethers on the inside of several household baking oven doors. Sci Total Environ 615:1019–1027CrossRefGoogle Scholar
  54. Gasic B, Moeckel C, MacLeod M, Brunner J, Scheringer M, Jones KC, Hungerbühler K (2009) Measuring and modeling short-term variability of PCBs in air and characterization of urban source strength in Zurich, Switzerland. Environ Sci Technol 43:769–776CrossRefGoogle Scholar
  55. German BBodSchV (1999) German Federal Soil Protection Regulation (Bundes-Bodenschutz- und Altlastenverordnung), Bundesgesetzblatt. Jahrgang 1999 Teil I Nr.36, S. 1554 pp, Bonn, 16. Juli 1999Google Scholar
  56. Glüge J, Wang Z, Bogdal C, Scheringer M, Hungerbühler K (2016) Global production, use, and emission volumes of short-chain chlorinated paraffins—a minimum scenario. Sci Total Environ 573:1132–1146CrossRefGoogle Scholar
  57. Glüge J, Steinlin C, Schalles S, Wegmann L, Tremp J, Breivik K, Hungerbühler K, Bogdal C (2017) Import, use, and emissions of PCBs in Switzerland from 1930 to 2100. PLoS One 12(10):e0183768CrossRefGoogle Scholar
  58. GoßlerK, Höhlein T (1992) Schlussbericht zum Forschungsvorhaben „Quantifizierung der Ausgasung von polychlorierten Biphenylen aus Fugendichtmassen“, T 2454, Landesgewerbeanstalt Bayern, NürnbergGoogle Scholar
  59. Guhl B, Stürenberg F-J, Santora G (2014) Contaminant levels and parasite infection in the European eel (Anguilla anguilla) in North Rhine-Westfalian rivers. Environ Sci Eur 26:26CrossRefGoogle Scholar
  60. Harrad S, Ibarra C, Robson M, Melymuk L, Zhang X, Diamond M, Douwes J (2009) Polychlorinated biphenyls in domestic dust from Canada, New Zealand, United Kingdom and United States: implications for human exposure. Chemosphere 76(2):232–238CrossRefGoogle Scholar
  61. Heinisch E, Kettrup A, Bergheim W, Holoubek I, Wenzel S (2003) PCB in aquatic ecosystems of the river Elbe and Berlin waters—source oriented monitoring. Fresenius Environ Bull 12:103–110Google Scholar
  62. Heinisch E, Kettrup A, Bergheim W, Martens D, Wenzel S (2006) Persistent chlorinated hydrocarbons, source-oriented monitoring in aquatic media. 5. The polychlorinated biphenyls (PCBs). Fresenius Environ Bull 15:1344–1362Google Scholar
  63. Heinisch E, Kettrup A, Bergheim W, Wenzel S (2007) Persistent chlorinated hydrocarbons, source-oriented monitoring in aquatic media. 6. Strikingly high contaminated sites. Fresenius Environ Bull 16:1248–1273Google Scholar
  64. Hembrock-HegerA (2011) Dioxine und PCB in Böden, Pflanzen, Futter- und Lebensmitteln in Überschwemmungsgebieten in NRW. UBA Fachgespräch Belastung der terrestrischen Umwelt mit Dioxinen und PCB; 13./14. Oktober 2011, BerlinGoogle Scholar
  65. Hembrock-HegerA, LeisnerJ, HartmannF (2013) PCB in Böden, Pflanzen und Rindfleisch aus Weidehaltung—Untersuchungen in Nordrhein-Westfalen. Vortrag UBA-Fachgespräch „Belastung von Rindfleisch mit PCB aus extensiver Haltung“ 5. Februar 2013, BMU, BonnGoogle Scholar
  66. Heres L, Hoogenboom R, Herbes R, Traag W, Urlings B (2010) Tracing and analytical results of the dioxin contamination incident in 2008 originating from the Republic of Ireland. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 27:1733–1744CrossRefGoogle Scholar
  67. Herrick RF, Lefkowitz DJ, Weymouth GA (2007) Soil contamination from PCB-containing buildings. Environ Health Perspect 115(2):173–175CrossRefGoogle Scholar
  68. HoogenboomL (2013) Carry-over of PCBs to cows and chickens—knowns and unknowns. Vortrag UBA Fachgespräch „Belastung von Rindfleisch mit PCB aus extensiver Haltung“ 5. Februar 2013, BMU, BonnGoogle Scholar
  69. Hoogenboom LA, Kan CA, Zeilmaker MJ, Van Eijkeren J, Traag WA (2006) Carry-over of dioxins and PCBs from feed and soil to eggs at low contamination levels—influence of mycotoxin binders on the carryover from feed to eggs. Food Addit Contam 23:518–527CrossRefGoogle Scholar
  70. Hoogenboom R, ten Dam G, Immerzeel J, Traag W (2014) Building related sources of PCBs in eggs from free range hens. Organohalogen Compd 76:1700–1703Google Scholar
  71. Hoogenboom RLAP, Stark ML, Spolders M, Zeilmaker MJ, Traag WA, Ten Dam G, Schafft HA (2015) Accumulation of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in livers of young sheep. Chemosphere 122:137–144CrossRefGoogle Scholar
  72. Hoogenboom RLAP, Ten Dam G, van Bruggen M, Jeurissen SMF, van Leeuwen SPJ, Theelen RMC, Zeilmaker MJ (2016) Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and biphenyls (PCBs) in home-produced eggs. Chemosphere 150:311–319CrossRefGoogle Scholar
  73. Hu D, Hornbuckle KC (2010) Inadvertent polychlorinated biphenyls in commercial paint pigments. Environ Sci Technol 4(8):2822–2827CrossRefGoogle Scholar
  74. IARC International Agency for Research on Cancer (2015). IARC monographs on the evaluation of carcinogenic risks to humans. Volume 107. Polychlorinated biphenyls. http://monographs.iarc.fr/ENG/Monographs/vol107/mono107-001.pdf
  75. IKMS Internationale Kommission zum Schutz der Mosel und der Saar (2005) Internationales Messprogramm, PCB und verwandte Stoffe an Schwebstoffen und in Fischen in Mosel und Saar 2004″; PLEN 8/2005Google Scholar
  76. Jakobsson E, Asplund L (2000). Polychlorinated naphthalenes (CNs). In: Paasivirta J (ed) The handbook of environmental chemistry, Vol. 3 Anthropogenic Compounds Part K, New Types of Persistent Halogenated Compounds. Berlin, Springer-VerlagGoogle Scholar
  77. Jamshidi A, Hunter S, Hazrati S, Harrad S (2007) Concentrations and chiral signatures of polychlorinated biphenyls in outdoor and indoor air and soil in a major U.K. conurbation. Environ Sci Technol 41:2153–2158CrossRefGoogle Scholar
  78. Jartun M, Ottesen RT, Steinnes E, Volden T (2009) Painted surfaces—important sources of polychlorinated biphenyls (PCBs) contamination to the urban and marine environment. Environ Pollut 157:295–302CrossRefGoogle Scholar
  79. Kamphues J, Schulz AJ (2006) Dioxine: Wirtschaftseigenes Risikomanagement—Möglichkeiten und Grenzen. Dtsch Tierärztl Wochenschr 113:298–303Google Scholar
  80. Karl U, Haase M, Van der Kamp J (2010) Nationaler Durchführungsplan unter dem Stockholmer Abkommen zu persistenten organischen Schadstoffen (POPs)—Aktualisierung 2010. FuE-Vorhaben 360 01053, im Auftrag des Umweltbundesamtes, Dessau-Roßlau, November 2010Google Scholar
  81. Kijlstra A, Traag WA, Hoogenboom LA (2007) Effect of flock size on dioxin levels in eggs from chickens kept outside. Poult Sci 86(9):2042–2048CrossRefGoogle Scholar
  82. Kim KS, Hirai Y, Kato M, Urano K, Masunaga S (2004) Detailed PCB congener patterns in incinerator flue gas and commercial PCB formulations (Kanechlor). Chemosphere 55:539–553CrossRefGoogle Scholar
  83. Knechtenhofer L (2009) Schweiz, Ein Fünftel der Bäder ist mit PCB belastet, Kommunalmagazin, Bauen und Bauten, Nr22009. www.friedlipartner.ch/file/download/456/0902_KM_PCB.pdf
  84. Knetsch G (2012) Auswahl und Bewertung von Daten aus Umweltbeobachtungsprogrammen zur Bilanzierung von Polychlorierten Biphenylen—Modelltheoretische Ansätze der Integration. Dissertation, FU Berlin. http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000035463
  85. Knobeloch L, Turyk M, Imm P, Anderson H (2012) Polychlorinated biphenyls in vacuum dust and blood of residents in 20 Wisconsin households. Chemosphere 86(7):735–740CrossRefGoogle Scholar
  86. Kocan A, Petrik J, Jursa S, Chovancova J, Drobna B (2001) Environmental contamination with polychlorinated biphenyls in the area of their former manufacture in Slovakia. Chemosphere 43:595–600CrossRefGoogle Scholar
  87. Körner W, Peichl L, Miehle P, Riedel H, Hangen E (2011) Dioxine und PCB in der terrestrischen Umwelt in Bayern. Vortrag, UBA Fachgespräch Belastung der terrestrischen Umwelt mit Dioxinen und PCB; 13./14. Oktober 2011, BerlinGoogle Scholar
  88. Krueger J (2009) The Basel Convention and the international trade in hazardous wastes. In Yearbook of international cooperation in environment and development 2001–02 Edited by O Schram Stokke OB Thommessen. Earthscan publishingGoogle Scholar
  89. Lake IR, Foxall CD, Fernandes A, Lewis M, White O, Mortimer D, Dowding A, Rose M (2014) The effects of river flooding on dioxin and PCBs in beef. Sci Total Environ 491-492:184–191CrossRefGoogle Scholar
  90. Landwirtschaftskammer Niedersachsen 2011 Bewirtschaftung von schadstoffbelasteten Standorten in Niedersachsen. Oldenburg, Stand: August 2011Google Scholar
  91. Landwirtschaftskammer Niedersachsen 2014 Merkblatt PCB und Dioxine in Rindfleisch—Haltungsempfehlungen für Rinderhalter. Stand22.01.2014Google Scholar
  92. LANUV Nordrhein-Westfalen (2010) Bericht über das Untersuchungsvorhaben, Dioxine und PCB in Böden, Pflanzen, Futter- und Lebensmitteln in Überschwemmungsgebieten in Nordrhein-Westfalen 2009“ Essen, den27.09.2010Google Scholar
  93. LANUV Nordrhein-Westfalen (2012) Abschlussbericht zur weiterführenden Probenahme und Untersuchung von Böden in der Umgebung der Deponie Eyller Berg im Januar 2012Google Scholar
  94. Lehmann GM, Christensen K, Maddaloni M, Phillips LJ (2015) Evaluating health risks from inhaled polychlorinated biphenyls: research needs for addressing uncertainty. Environ Health Perspect 123(2):109–113Google Scholar
  95. LFGB (2013) Lebensmittel- und Futtermittelgesetzbuch in der Fassung der Bekanntmachung vom 3. Juni 2013 (BGBl. I S. 1426), das zuletzt durch Artikel 1 des Gesetzes vom 30. Juni 2017 (BGBl. I S. 2147) geändert worden istGoogle Scholar
  96. LfU (2009) Schredderanlagen und Abfalldeponien—relevante Sekundärquellen für dioxinähnliche PCB und verwandte persistente Schadstoffe, Bayerisches Landesamt für Umwelt, Augsburghttp://www.lfu.bayern.de/umweltqualitaet/umweltbeobachtung/schadstoffe_luft/projekte/doc/shredder_endbericht.pdf
  97. LfU (Bayerisches Landesamt für Umwelt) (2006) Ermittlung der Immissionsbelastung durch polychlorierte Dioxine (PCDD) und Furane (PCDF) sowie dioxinähnliche PCB in Bayern. Forschungsvorhaben im Auftrag des Bayerischen Staatsministeriums für Umwelt, Gesundheit und VerbraucherschutzGoogle Scholar
  98. LfU (Bayerisches Landesamt für Umwelt) (2011) Untersuchungen möglicher Boden- und Pflanzenbelastungen im Umfeld von Strommasten. Stand November2011Google Scholar
  99. Liberti L (2014) Dioxin and PCB contamination around a heavy industrial area: a case history. Int J Innov Sci Res 9:175–189Google Scholar
  100. MacKnightS (1991) Remediation of PCB [polychlorinated biphenyl]-contaminated soils from scrapyards. Haztech Canada Halifax '91: 1st annual Atlantic onshore and offshore environmental conferenceGoogle Scholar
  101. MarchantP (2017) Decontamination of pigs exposed to an environmental source of PCB. 37th International Symposium on Halogenated Persistent Organic Pollutants (POPs). August 20–25, Vancouver CanadaGoogle Scholar
  102. Marnane I (2012) Comprehensive environmental review following the pork PCB/dioxin contamination incident in Ireland. J Environ Monit 14:2551–2556CrossRefGoogle Scholar
  103. Murk AJ, van den Berg JH, Koeman JH, Brouwer A (1991) The toxicity of tetrachlorobenzyltoluenes (Ugilec 141) and polychlorobiphenyls (Aroclor 1254 and PCB-77) compared in Ah-responsive and Ah-nonresponsive mice. Environ Pollut 72(1):57–67CrossRefGoogle Scholar
  104. Ounnas F, Feidt C, Toussaint H, Marchand P, Bizec BL, Rychen G, Jurjanz S (2010) Polychlorinated biphenyl and low polybrominated diphenyl ether transfer to milk in lactating goats chronically exposed to contaminated soil. Environ Sci Technol 44(7):2682–2688CrossRefGoogle Scholar
  105. PEN Magazine (2010) Publication by the PCBs Elimination Network (PEN), Stockholm Convention. http://chm.pops.int/Implementation/IndustrialPOPs/PCBs/PCBEliminationNetwork/Activities/PENmagazine/tabid/738/Default.aspx
  106. PetrlikJ (2015) Persistent Organic Pollutants (POPs) in Chicken Eggs from Hot Spots in China. Arnika – Toxics and Waste Programme (Czech Republic). January, 2015Google Scholar
  107. RussiM (2016) PCB-Werte im Spöl mehrfach überhöht. Bündner Tagblatt Freitag 23. December 2016Google Scholar
  108. Sakurai T, Weber R, Ueno S, Nishino J, Tanaka M (2003) Relevance of PCBs for TEQ emission of fluidized bed incineration and impact of emission control devices. Chemosphere 53:619–625CrossRefGoogle Scholar
  109. Schaaffhausen Von J, Gramenz JP (1993) Aufkommen und Verbleib von PCB-Abfällen in der ehemaligen DDR sowie Herkunft und Entsorgung von PCB-Abfällen aus wehrtechnischen Geräten, aus Geräten bei der Bundesbahn (Reichsbahn) und Bundespost und von PCDM-Abfällen aus dem Bergbau, FuE Vorhaben 103 50 204, im Auftrag des Umweltbundesamtes, BerlinGoogle Scholar
  110. Schulz A-J, Wiesmüller T, Appuhn H, Stehr D, Severin K, Landmann D, Kamphues J (2005) Dioxin concentration in milk and tissues of cows and sheep related to feed and soil contamination. J Anim Physiol Anim Nutr 89:72–78CrossRefGoogle Scholar
  111. Schwartz et al. (2016) PCB in der Elbe, Eigenschaften, Vorkommen und Trends sowie Ursachen und Folgen der erhöhten Freisetzung im Jahr2015, Projekt Schadstoffsanierung Elbsedimente – ELSA, http://elsa-elbe.de/massnahmen/fachstudien-neu/bericht-pcb-in-der-elbe.html
  112. Secretariat of the Stockholm Convention (2017) Draft guidance on preparing inventories of polychlorinated naphthalenes (PCNs). Draft March 2017. UNEP/POPS/COP.8/INF/19Google Scholar
  113. Stuart-Smith SJ, Jepson PD (2017) Persistent threats need persistent counteraction: responding to PCB pollution in marine mammals. Mar Policy 84:69–75CrossRefGoogle Scholar
  114. Sundahl M, Sikander E, Ek-Olausson B, Hjorthage A, Rosell L, Tornevall M (1999) Determinations of PCB within a project to develop cleanup methods for PCB-containing elastic sealant used in outdoor joints between concrete blocks in buildings. J Environ Monit 1999(1):383–387Google Scholar
  115. TakasugaT (2001) Analysis of PCBs in transformer oil, environmental and industrial samples. Dissertation; Kyoto University (in Japanese)Google Scholar
  116. Takasuga et al. (2012) Unintentional POPs (PCBs, PCBz, PCNs) contamination in articles containing chlorinated paraffins and related impacted chlorinated paraffin products. Presentation, Dioxin 2012, 26–31. August, CairnsGoogle Scholar
  117. Turrio-Baldassarri L, Alivernini S, Carasi S, Casella M, Fuselli S, Iacovella N, Iamiceli AL, La Rocca C, Scarcella C, Battistelli CL (2009) PCB, PCDD and PCDF contamination of food of animal origin as the effect of soil pollution and the cause of human exposure in Brescia. Chemosphere 76(2):278–285CrossRefGoogle Scholar
  118. Ueberschär KH, Matthes S (2004) Dose-response feeding study of chlorinated paraffins in broiler chickens: effects on growth rate and tissue distribution. Food Addit Contam 21(10):943–948CrossRefGoogle Scholar
  119. Umlauf G, Christoph EH, Savolainen R, Skejo H, Clemens J, Goldbach H, Scherer H, Lanzini L (2004) PCDD/Fs and dioxin-like PCBs in soil after 42 years of bio waste application. Organohalogen Compd 66:1340–1345Google Scholar
  120. UNEP (2013) Toolkit for identification and quantification of releases of dioxins, furans and other unintentional POPs under Article 5 of the Stockholm Convention on Persistent Organic Pollutants. http://toolkit.pops.int/
  121. UNEP (2017) Consolidated assessment of efforts made towards the elimination of polychlorinated biphenyls. UNEP/POPS/COP.8/INF/10Google Scholar
  122. UngemachLC (2013) Die Dioxinbelastung von Schlachtrindern aus einer Färsenvornutzung auf exponiertem Grünland nach einer Ausmast mit unbelastetem Futter. Dissertation, Tierärztliche Hochschule HannoverGoogle Scholar
  123. UNIDO (2011) UNIDO Contaminated Site Investigation and Management ToolkitGoogle Scholar
  124. Van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, Fiedler H, Hakansson H, Hanberg A, Haws L, Rose M, Safe S, Schrenk D, Tohyama C, Tritscher A, Tuomisto J, Tysklind M, Walker N, Peterson RE (2006) The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 93(2):223–241Google Scholar
  125. Van Larebeke N, Hens L, Schepens P, Covaci A, Baeyens J, Everaert K, Bernheim JL, Vlietinck R, De Poorter G (2001) The Belgian PCB and dioxin incident of January-June 1999: exposure data and potential impact on health. Environ Health Perspect 109:265–273CrossRefGoogle Scholar
  126. Waegeneers N, De Steur H, De Temmerman L, Van Steenwinkel S, Gellynck X, Viaene J (2009) Transfer of soil contaminants to home-produced eggs and preventive measures to reduce contamination. Sci Total Environ 407(15):4438–4446CrossRefGoogle Scholar
  127. Waerner E (2015) Compilation of PCB applications for owners and public officials, MedPartnership, Regional Activity Center for Sustainable Consumption and Production (SCP/RAC), Barcelona, April 2015Google Scholar
  128. Wahl K, Malisch R, Kotz A, Groh S, Nöltner T (2013) PCB in Rindfleisch aus Mutterkuhhaltung (Weidehaltung)—Untersuchungen und Ursachenermittlung in Baden-Württemberg. Vortrag UBA Fachgespräch „Belastung von Rindfleisch mit PCB aus extensiver Haltung“ 5. Februar 2013, BMU, BonnGoogle Scholar
  129. Weber R, Herold C (2015) PCB im Bausektor und daraus freigesetzte Emissionen—eine Bestandsaufnahme und Neubewertung, Annex 1 in Weber et al. (2015a), https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/doku_114_2015_analyse_und_trendabschaetzung_der_belastung_anhang_1_1.pdf
  130. Weber R, Iino F, Imagawa T, Takeuchi M, Sakurai T, Sadakata M (2001) Formation of PCDF, PCDD, PCB, and PCN in de novo synthesis from PAH: mechanisms and correlation to fluidized bed incinerators. Chemosphere 44:1429–1438CrossRefGoogle Scholar
  131. Weber R, Gaus C, Tysklind M, Johnston P, Forter M, Hollert H, Heinisch H, Holoubek I, Lloyd-Smith M, Masunaga S, Moccarelli P, Santillo D, Seike N, Symons R, Torres JPM, Verta M, Varbelow G, Vijgen J, Watson A, Costner P, Wölz J, Wycisk P, Zennegg M (2008) Dioxin- and POP-contaminated sites—contemporary and future relevance and challenges. Env Sci Pollut Res Int 15:363–393CrossRefGoogle Scholar
  132. Weber R, Albrecht M, Ballschmiter K, Berger J, Bruns-Weller E, Kamphues J, Körner W, Malisch R, Nöltner T, Schenkel H, Severin K, Vossler C, Wahl K (2014) Safe food production from free range beef—minimizing TEQ-levels in meat by tracking PCB-sources. Organohalogen Compd 76:815–818Google Scholar
  133. Weber R, Hollert H, Kamphues J, Ballschmiter K, Blepp M, Herold C (2015a) Analyse und Trendabschätzung der Belastung der Umwelt und von Lebensmitteln mit ausgewählten POPs und Erweiterung des Datenbestandes der POP-Dioxin-Datenbank des Bundes und der Länder mit dem Ziel pfadbezogener Ursachenaufklärung, Umweltbundesamt, Dokumentationen114/2015, http://www.umweltbundesamt.de/publikationen/analyse-trendabschaetzung-der-belastung-der-umwelt
  134. Weber R, Watson A, Petrlik J, Winski A, Schwedler O, Baitinger C, Behnisch P (2015b) High levels of PCDD/F, PBDD/F and PCB in eggs around pollution sources demonstrates the need to review soil standards. Organohalogen Compd 77:615–618Google Scholar
  135. Weber R, Hollert H, Kamphues J, Ballschmiter K, Blepp M, Herold C (2015c) Forschungsbedarf und Handlungsbedarf zur Verringerung und Vermeidung der Schadstoffbelastung. Annex 2 in Weber et al. (2015), https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/doku_114_2015_analyse_und_trendabschaetzung_der_belastung_anhang_2_1.pdf
  136. Weber R, Gonser S, Köhler J, Körner W, Herold C, Haag R, Krapp M, Peichl L (2017) Biomonitoring of polychlorinated biphenyls in Bavaria/Germany—long term observations and standardization. Environ Sci Pollut Res Int.  https://doi.org/10.1007/s11356-017-1108-6
  137. WHO World Health Organization (1998) Assessment of the health risk of dioxins: re-evaluation of the tolerable daily intake (TDI), Executive Summary, WHO Consultation May 25-29 1998, Geneva, Switzerland, http://www.who.int/ipcs/publications/en/exe-sum-final.pdf
  138. WHO World Health Organization (2003) Polychlorinated biphenyls: human health aspects Concise International Chemical Assessment Document 55, http://www.who.int/ipcs/publications/cicad/en/cicad55.pdf
  139. Wijegunasekara B, Ranpatige D, Hewawasam V, Werahera SM, Azmy SAM, Weber R (2015) PCB inventory and management challenge & progress in Sri Lanka. Organohalogen Compd 77:519–522Google Scholar
  140. Willett LB, Hess JF (1975) Polychlorinated biphenyl residues in silos in the United States. Residue Rev 55:135–147Google Scholar
  141. Wimmerová S, Watson A, Drobná B, Šovčíková E, Weber R, Lancz K, Patayová H, Jurečková D, Jusko TA, Murínová L, Hertz-Picciotto I, Trnovec T (2015) The spatial distribution of human exposure to PCBs around a former production site in Slovakia. Environ Sci Pollut Res Int 22:14405–14415CrossRefGoogle Scholar
  142. Winkler J (2015) High levels of dioxin-like PCBs found in organic-farmed eggs caused by coating materials of asbestos-cement fiber plates: a case study. Environ Int 80:72–78CrossRefGoogle Scholar
  143. Xia D, Gao L, Zheng M, Li J, Zhang L, Wu Y, Tian Q, Huang H, Qiao L (2017) Human exposure to short- and medium-chain chlorinated paraffins via mothers' milk in Chinese urban population. Environ Sci Technol 51(1):608–615Google Scholar
  144. Yuan B, Strid A, Darnerud PO, de Wit CA, Nyström J, Bergman Å, Zennegg M (2017) Chlorinated paraffins leaking from hand blenders can lead to significant human exposures. Environ Int 109:73–80CrossRefGoogle Scholar
  145. Zeng L, Lam JC, Wang Y, Jiang G, Lam PK (2015) Temporal trends and pattern changes of short- and medium-chain chlorinated paraffins in marine mammals from the South China Sea over the past decade. Environ Sci Technol 49(19):11348–11355CrossRefGoogle Scholar
  146. Zennegg M, Schmid P, Tremp J (2010a) PCB fish contamination in Swiss rivers—tracing of point sources. Organohalogen Compd 72:362–365Google Scholar
  147. Zennegg M, Schmid P, Tremp J (2010b) PCB fish contamination in Swiss rivers—tracing of point sources. In: Presentation, 30th International Symposium on Halogenated Persistent Organic Pollutants, September 12–17, San Antonio, United StatesGoogle Scholar
  148. Zennegg M, Munoz M, Schmid P, Gerecke AC (2013) Temporal trends of persistent organic pollutants in digested sewage sludge (1993-2012). Environ Int 60:202–208CrossRefGoogle Scholar
  149. Zennegg M, Schmid P, Kuchen A, Beer M, Tamborini L, Beckmann M, Arpagaus S, Caduff A, Lanfranchi M (2014) High PCB contamination detected in cattle from extensive farming in Switzerland. Organohalogen Compd 76:118–121Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.POPs Environmental ConsultingSchwäbisch GmündGermany
  2. 2.Institute for Environmental ResearchRWTH Aachen UniversityAachenGermany
  3. 3.Institute of Animal NutritionUniversity of Veterinary Medicine Hannover, FoundationHannoverGermany
  4. 4.Institute of Animal ScienceUniversity of HohenheimStuttgartGermany
  5. 5.Öko-Institut e.VFreiburgGermany
  6. 6.Ulm University (Emeritus)UlmGermany

Personalised recommendations