Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 17, pp 16720–16728 | Cite as

Immunocompetence analysis of the aquatic snail Lymnaea stagnalis exposed to urban wastewaters

  • Paul Boisseaux
  • Patrice Noury
  • Nicolas Delorme
  • Lucile Perrier
  • Helene Thomas-Guyon
  • Jeanne Garric
Research Article

Abstract

Wastewater treatment plant effluents from urban area are a well-known source of chronic multiple micropollution to the downstream living organisms. In this study, ecologically relevant laboratory-bred freshwater gastropods, Lymnaea stagnalis, were exposed for 29 days to raw effluents of a wastewater treatment plant in Lyon area (France). A time-course analysis of individual markers of immunocompetence (hemocyte density and viability, hemocyte NADPH activity, phenol oxidase activity, and capacity of phagocytosis) has shown slight trends of inflammatory-like responses induced by the 100% effluents. So far, no short-term hazard for L. stagnalis can be revealed. However, over the long term, such environmental stress-stimulating immune responses could provoke deleterious life history trade-offs because the immune system is known to be highly energy-consuming.

Keywords

Lymnaea stagnalis Wastewater Immunocompetence Ecotoxicology 

Notes

Funding information

The Rhône-Alpes region provided financial support to Paul Boisseaux in a PhD fellowship program (ARC3 Environnement).

Supplementary material

11356_2018_1790_MOESM1_ESM.docx (360 kb)
ESM 1 (DOCX 359 kb)

References

  1. Ahrens L, Felizeter S, Sturm R, Xie Z, Ebinghaus R (2009) Polyfluorinated compounds in waste water treatment plant effluents and surface waters along the River Elbe, Germany. Mar Pollut Bull 58:1326–1333CrossRefGoogle Scholar
  2. Akaishi FM, St-Jean SD, Bishay F, Clarke J, da Rabitto IS, de Oliveira Ribeiro CA (2007) Immunological responses, histopathological finding and disease resistance of blue mussel (Mytilus edulis) exposed to treated and untreated municipal wastewater. Aquat Toxicol 82:1–14CrossRefGoogle Scholar
  3. Allam B, Paillard C, Auffret M (2000) Alterations in hemolymph and extrapallial fluid parameters in the Manila clam, Ruditapes philippinarum, challenged with the pathogen Vibrio tapetis. J Invertebr Pathol 76:63–69CrossRefGoogle Scholar
  4. Aminot Y, Le Menach K, Pardon P, Etcheber H, Budzinski H (2016) Inputs and seasonal removal of pharmaceuticals in the estuarine Garonne River. Mar Chem 185:3–11CrossRefGoogle Scholar
  5. Auffret M, Mujdzic N, Corporeau C, Moraga D (2002) Xenobiotic-induced immunomodulation in the European flat oyster, Ostrea edulis. Mar Environ Res 54:585–589CrossRefGoogle Scholar
  6. Auffret M, Duchemin M, Rousseau S, Boutet I, Tanguy A, Moraga D, Marhic A (2004) Monitoring of immunotoxic responses in oysters reared in areas contaminated by the “Erika” oil spill. Aquat Living Resour 17:297–302CrossRefGoogle Scholar
  7. Auffret M, Rousseau S, Boutet I, Tanguy A, Baron J, Moraga D, Duchemin M (2006) A multiparametric approach for monitoring immunotoxic responses in mussels from contaminated sites in Western Mediterranea. Ecotoxicol Environ Saf 63:393–405CrossRefGoogle Scholar
  8. Bates, D., M. Mächler, B. Bolker, and S. Walker. 2014. Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823Google Scholar
  9. Besse J-P, Garric J (2008) Human pharmaceuticals in surface waters: implementation of a prioritization methodology and application to the French situation. Toxicol Lett 176:104–123CrossRefGoogle Scholar
  10. Besse J-P, Latour J-F, Garric J (2012) Anticancer drugs in surface waters: what can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs? Environ Int 39:73–86CrossRefGoogle Scholar
  11. Bianchi VA, Castro JM, Rocchetta I, Nahabedian DE, Conforti V, Luquet CM (2015) Long-term feeding with Euglena gracilis cells modulates immune responses, oxidative balance and metabolic condition in Diplodon chilensis (Mollusca, Bivalvia, Hyriidae) exposed to living Escherichia coli. Fish Shellfish Immunol 42:367–378CrossRefGoogle Scholar
  12. Boisseaux, P., M. Gust, S. Betoulle, and J. Garric. 2014. Short-term immunotoxic effects of an anti-cancer drug (Etoposide) on the freshwater pondsnail Lymnaea stagnalis. Journal of Xenobiotics 4Google Scholar
  13. Boisseaux P, Delignette-Muller M-L, Abbaci K, Thomas H, Garric J (2016a) Analysis of hemocytes in Lymnaea stagnalis: characterization and effects of repeated hemolymph collections. Fish Shellfish Immunol 57:116–126CrossRefGoogle Scholar
  14. Boisseaux, P., P. Noury, M. L. Delignette-Muller, H. Thomas, and J. Garric. 2016b. Recommendations for the analysis of hemocyte-related immunocompetent oxidative activity in the freshwater snail Lymnaea stagnalis. Journal of Xenobiotics 6Google Scholar
  15. Brion F, Tyler CR, Palazzi X, Laillet B, Porcher J-M, Garric J, Flammarion P (2004) Impacts of 17β-estradiol, including environmentally relevant concentrations, on reproduction after exposure during embryo-larval-, juvenile-and adult-life stages in zebrafish (Danio rerio). Aquat Toxicol 68:193–217CrossRefGoogle Scholar
  16. Canesi L, Ciacci C, Betti M, Fabbri R, Canonico B, Fantinati A, Marcomini A, Pojana G (2008) Immunotoxicity of carbon black nanoparticles to blue mussel hemocytes. Environ Int 34:1114–1119CrossRefGoogle Scholar
  17. Canesi L, Ciacci C, Fabbri R, Marcomini A, Pojana G, Gallo G (2012) Bivalve molluscs as a unique target group for nanoparticle toxicity. Mar Environ Res 76:16–21CrossRefGoogle Scholar
  18. Cédat B, de Brauer C, Métivier H, Dumont N, Tutundjan R (2016) Are UV photolysis and UV/H 2 O 2 process efficient to treat estrogens in waters? Chemical and biological assessment at pilot scale. Water Res 100:357–366CrossRefGoogle Scholar
  19. Coles JA, Farley SR, Pipe RK (1994) Effects of fluoranthene on the immunocompetence of the common marine mussel, Mytilus edulis. Aquat Toxicol 30:367–379CrossRefGoogle Scholar
  20. Dagnino S, Gomez E, Picot B, Cavaillès V, Casellas C, Balaguer P, Fenet H (2010) Estrogenic and AhR activities in dissolved phase and suspended solids from wastewater treatment plants. Sci Total Environ 408:2608–2615CrossRefGoogle Scholar
  21. Ducrot V, Askem C, Azam D, Brettschneider D, Brown R, Charles S, Coke M, Collinet M, Delignette-Muller M-L, Forfait-Dubuc C (2014) Development and validation of an OECD reproductive toxicity test guideline with the pond snail Lymnaea stagnalis (Mollusca, Gastropoda). Regul Toxicol Pharmacol 70:605–614CrossRefGoogle Scholar
  22. Farcy E, Gagné F, Martel L, Fortier M, Trépanier S, Brousseau P, Fournier M (2011) Short-term physiological effects of a xenobiotic mixture on the freshwater mussel Elliptio complanata exposed to municipal effluents. Environ Res 111:1096–1106CrossRefGoogle Scholar
  23. Fent K, Kunz PY, Gomez E (2008) UV filters in the aquatic environment induce hormonal effects and affect fertility and reproduction in fish. CHIMIA Int J Chem 62:368–375CrossRefGoogle Scholar
  24. Ferrari B t, Paxeus N, Giudice RL, Pollio A, Garric J (2003) Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicol Environ Saf 55:359–370CrossRefGoogle Scholar
  25. Ferrari B, Mons R, Vollat B, Fraysse B, Paxēaus N, Giudice RL, Pollio A, Garric J (2004) Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environ Toxicol Chem 23:1344–1354CrossRefGoogle Scholar
  26. Fournier M, Pellerin J, Clermont Y, Morin Y, Brousseau P (2001) Effects of in vivo exposure of Mya arenaria to organic and inorganic mercury on phagocytic activity of hemocytes. Toxicology 161:201–211CrossRefGoogle Scholar
  27. Gagnaire B, Gay M, Huvet A, Daniel J-Y, Saulnier D, Renault T (2007) Combination of a pesticide exposure and a bacterial challenge: in vivo effects on immune response of Pacific oyster, Crassostrea gigas (Thunberg). Aquat Toxicol 84:92–102CrossRefGoogle Scholar
  28. Gagné F, Blaise C, Aoyama I, Luo R, Gagnon C, Couillard Y, Campbell P, Salazar M (2002) Biomarker study of a municipal effluent dispersion plume in two species of freshwater mussels. Environ Toxicol 17:149–159CrossRefGoogle Scholar
  29. Gagné F, André C, Cejka P, Hausler R, Fournier M, Blaise C (2008) Immunotoxic effects on freshwater mussels of a primary-treated wastewater before and after ozonation: a pilot plant study. Ecotoxicol Environ Saf 69:366–373CrossRefGoogle Scholar
  30. Gagnon C, Turcotte P, Trépanier S, Gagné F, Cejka PJ (2014) Impacts of municipal wastewater oxidative treatments: changes in metal physical speciation and bioavailability. Chemosphere 97:86–91CrossRefGoogle Scholar
  31. Galloway TS, Depledge MH (2001) Immunotoxicity in invertebrates: measurement and ecotoxicological relevance. Ecotoxicology 10:5–23CrossRefGoogle Scholar
  32. Gerecke AC, Schärer M, Singer HP, Müller SR, Schwarzenbach RP, Sägesser M, Ochsenbein U, Popow G (2002) Sources of pesticides in surface waters in Switzerland: pesticide load through waste water treatment plants––current situation and reduction potential. Chemosphere 48:307–315CrossRefGoogle Scholar
  33. Gust M, Buronfosse T, Geffard O, Mons R, Queau H, Mouthon J, Garric J (2010) In situ biomonitoring of freshwater quality using the New Zealand mudsnail Potamopyrgus antipodarum (Gray) exposed to waste water treatment plant (WWTP) effluent discharges. Water Res 44:4517–4528CrossRefGoogle Scholar
  34. Gust M, Fortier M, Garric J, Fournier M, Gagné F (2013a) Effects of short-term exposure to environmentally relevant concentrations of different pharmaceutical mixtures on the immune response of the pond snail Lymnaea stagnalis. Sci Total Environ 445:210–218CrossRefGoogle Scholar
  35. Gust M, Fortier M, Garric J, Fournier M, Gagné F (2013b) Immunotoxicity of surface waters contaminated by municipal effluents to the snail Lymnaea stagnalis. Aquat Toxicol 126:393–403CrossRefGoogle Scholar
  36. Gust M, Gagné F, Berlioz-Barbier A, Besse JP, Buronfosse T, Tournier M, Tutundjian R, Garric J, Cren-Olivé C (2014) Caged mudsnail Potamopyrgus antipodarum (Gray) as an integrated field biomonitoring tool: exposure assessment and reprotoxic effects of water column contamination. Water Res 54:222–236CrossRefGoogle Scholar
  37. Knaap WPW, Meuleman EA, Sminia T (1987) Alterations in the internal defence system of the pond snail Lymnaea stagnalis induced by infection with the schistosome Trichobilharzia ocellata. Parasitol Res 73:57–65CrossRefGoogle Scholar
  38. Köck-Schulmeyer M, Villagrasa M, de Alda ML, Céspedes-Sánchez R, Ventura F, Barceló D (2013) Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Sci Total Environ 458:466–476CrossRefGoogle Scholar
  39. Lacaze E, Devaux A, Bony S, Bruneau A, André C, Pelletier M, Gagné F (2013) Genotoxic impact of a municipal effluent dispersion plume in the freshwater mussel Elliptio complanata: an in situ study. J Xenobiotics 3:6CrossRefGoogle Scholar
  40. Lammel T, Boisseaux P, Fernández-Cruz M-L, Navas JM (2013) Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2. Part Fibre Toxicol 10:27CrossRefGoogle Scholar
  41. Lammel T, Boisseaux P, Navas JM (2015) Potentiating effect of graphene nanomaterials on aromatic environmental pollutant-induced cytochrome P450 1A expression in the topminnow fish hepatoma cell line PLHC-1. Environ Toxicol 30:1192–1204CrossRefGoogle Scholar
  42. Le Guernic A, Sanchez W, Palluel O, Bado-Nilles A, Floriani M, Turies C, Chadili E, Della Vedova C, Cavalié I, Adam-Guillermin C (2016) Acclimation capacity of the three-spined stickleback (Gasterosteus aculeatus, L.) to a sudden biological stress following a polymetallic exposure. Ecotoxicology 25:1478–1499CrossRefGoogle Scholar
  43. Leclercq M, Mathieu O, Gomez E, Casellas C, Fenet H, Hillaire-Buys D (2009) Presence and fate of carbamazepine, oxcarbazepine, and seven of their metabolites at wastewater treatment plants. Arch Environ Contam Toxicol 56:408–415CrossRefGoogle Scholar
  44. Mailler R, Gasperi J, Coquet Y, Deshayes S, Zedek S, Cren-Olivé C, Cartiser N, Eudes V, Bressy A, Caupos E (2015) Study of a large scale powdered activated carbon pilot: removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents. Water Res 72:315–330CrossRefGoogle Scholar
  45. Miege C, Choubert JM, Ribeiro L, Eusèbe M, Coquery M (2009a) Fate of pharmaceuticals and personal care products in wastewater treatment plants–conception of a database and first results. Environ Pollut 157:1721–1726CrossRefGoogle Scholar
  46. Miege C, Gabet V, Coquery M, Karolak S, Jugan ML, Oziol L, Levi Y, Chevreuil M (2009b) Evaluation of estrogenic disrupting potency in aquatic environments and urban wastewaters by combining chemical and biological analysis. TrAC Trends Anal Chem 28:186–195CrossRefGoogle Scholar
  47. Mitta G, Vandenbulcke F, Hubert F, Roch P (1999) Mussel defensins are synthesised and processed in granulocytes then released into the plasma after bacterial challenge. J Cell Sci 112:4233–4242Google Scholar
  48. Müller C, Ruby S, Brousseau P, Cyr D, Fournier M, Gagné F (2009) Immunotoxicological effects of an activated-sludge-treated effluent on rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol Part C: Toxicol Pharmacol 150:390–394Google Scholar
  49. Oubella R, Maes P, Paillard C, Auffret M (1993) Experimentally induced variation in hemocyte density for Ruditapes philippinarum and R. decussatus (Mollusca, Bivalvia). Dis Aquat Org 15:193–197CrossRefGoogle Scholar
  50. Ozaki N, Takamura Y, Kojima K, Kindaichi T (2015) Loading and removal of PAHs in a wastewater treatment plant in a separated sewer system. Water Res 80:337–345CrossRefGoogle Scholar
  51. Renault T (2015) Immunotoxicological effects of environmental contaminants on marine bivalves. Fish Shellfish Immunol 46:88–93CrossRefGoogle Scholar
  52. Russo J, Lagadic L (2004) Effects of environmental concentrations of atrazine on hemocyte density and phagocytic activity in the pond snail Lymnaea stagnalis (Gastropoda, Pulmonata). Environ Pollut 127:303–311CrossRefGoogle Scholar
  53. Russo J, Madec L, Brehélin M (2009) Haemocyte lysosomal fragility facing an environmental reality: a toxicological perspective with atrazine and Lymnaea stagnalis (Gastropoda, Pulmonata) as a test case. Ecotoxicol Environ Saf 72:1719–1726CrossRefGoogle Scholar
  54. Salo HM, Hébert N, Dautremepuits C, Cejka P, Cyr DG, Fournier M (2007) Effects of Montreal municipal sewage effluents on immune responses of juvenile female rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 84:406–414CrossRefGoogle Scholar
  55. Schröder HF (1993) Surfactants: non-biodegradable, significant pollutants in sewage treatment plant effluents: separation, identification and quantification by liquid chromatography, flow-injection analysis—mass spectrometry and tandem mass spectrometry. J Chromatogr A 647:219–234CrossRefGoogle Scholar
  56. Segner H, Wenger M, Möller AM, Köllner B, Casanova-Nakayama A (2012) Immunotoxic effects of environmental toxicants in fish—how to assess them? Environ Sci Pollut Res 19:2465–2476CrossRefGoogle Scholar
  57. Seppälä O, Leicht K (2013) Activation of the immune defence of the freshwater snail Lymnaea stagnalis by different immune elicitors. J Exp Biol 216:2902–2907CrossRefGoogle Scholar
  58. Team, R. C. 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2015, URL h ttp. www. R-project. orgGoogle Scholar
  59. Therneau, T. M. 2015. A package for survival analysis in S 2015. Version 2.38Google Scholar
  60. Urbaniak M, Kiedrzyńska E (2015) Concentrations and toxic equivalency of polychlorinated biphenyls in Polish wastewater treatment plant effluents. Bull Environ Contam Toxicol 95:530–535CrossRefGoogle Scholar
  61. Vijayavel K, Gopalakrishnan S, Thiagarajan R, Thilagam H (2009) Immunotoxic effects of nickel in the mud crab Scylla serrata. Fish Shellfish Immunol 26:133–139CrossRefGoogle Scholar
  62. Wigh A, Devaux A, Brosselin V, Gonzalez-Ospina A, Domenjoud B, Aït-Aïssa S, Creusot N, Gosset A, Bazin C, Bony S (2016) Proposal to optimize ecotoxicological evaluation of wastewater treated by conventional biological and ozonation processes. Environ Sci Pollut Res 23:3008–3017CrossRefGoogle Scholar
  63. Yu J, Hu J, Tanaka S, Fujii S (2009) Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in sewage treatment plants. Water Res 43:2399–2408CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Irstea, UR RIVERLY, Laboratory of EcotoxicologyCentre de Lyon-VilleurbanneVilleurbanne CedexFrance
  2. 2.LIttoral Environnement et Sociétés (LIENSs) - UMR 7266Bâtiment ILE 2La RochelleFrance

Personalised recommendations