Skip to main content
Log in

Nanoanalytics: history, concepts, and specificities

  • Analytical methods for characterization of nano- and micro-objects
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This article deals with analytical chemistry devoted to nano-objects. A short review presents nano-objects, their singularity in relation to their dimensions, genesis, and possible transformations. The term nano-object is then explained. Nano-object characterization activities are considered and a definition of nanoanalytics is proposed. Parameters and properties for describing nano-objects on an individual scale and on the scale of a population are also presented. They enable the specificities of analytical activities to be highlighted in terms of multi-criteria description strategies and observation scale. Special attention is given to analytical methods, their dimensioning and validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amarjargal A, Tijing LD, Pant HR, Park C-H, Kim CS (2012) Simultaneous synthesis of TiO2 microrods in situ decorated with Ag nanoparticles and their bactericidal efficiency. Curr Appl Phys 12:1106–1112

    Article  Google Scholar 

  • Anderson W, Kozak D, Coleman VA, Jämting AK, Trau M (2013) A comparative study of submicron sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions. J Colloid Interface Sci 405:322–330

    Article  CAS  Google Scholar 

  • Antoniak C, Spasova M, Trunova A, Fauth K, Farle M, Wende H (2009) Correlation of magnetic moments and local structure of FePt nanoparticles. J Phys: Conference Series 190:1–11

    Google Scholar 

  • Baalousha M, Motelica-Heino M, Galaup S, Le Coustumer P (2005) Supramolecular structure of humic acids by TEM with improved sample preparation and staining. Microsc Res Tech 66:299–306

    Article  CAS  Google Scholar 

  • Baalousha M, Kammer FV, Motelica-Heino M, Baborowski M, Hofmeister C, Le Coustumer P (2006) Size-based speciation of natural colloidal particles by flow field flow fractionation, inductively coupled plasma-mass spectrometry, and transmission electron microscopy/X-ray energy dispersive spectroscopy: colloids-trace element interaction. Environ Sci Technol 40:2156–2162

    Article  CAS  Google Scholar 

  • Beija M, Salvayre R, Lauth-de Viguerie N, Marty J-D (2012) Colloidal systems for drug delivery: from design to therapy. Trends Biotechnol 30(9):485–496

    Article  CAS  Google Scholar 

  • Bian S-W, Mudunkotuwa IA, Rupasinghe T, Grassian VH (2011) Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 27:6059–6068

    Article  CAS  Google Scholar 

  • Boyd RD, Pichaimuthu SK, Cuenat A (2011) New approach to inter-technique comparisons for nanoparticle size measurements using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering. Colloids Surf A Physichem Eng Asp 387:35–42

    Article  CAS  Google Scholar 

  • Buffle J, van Leeuwen HP (eds) (1992) Environmental particles. Environmental Analytical and Physical Chemistry Series, CRC Press

  • Buchberger W, Lindner W (2010) Editorial: Euroanalysis XV, 2009: the European conference on analytical chemistry. Anal Bioanal Chem 397(1):5–6

    Article  CAS  Google Scholar 

  • Busch J, Meichner T, Potthoff A, Bleyl S, Georgi A, Macknenzie K, Trabitzsch R, Werban U, Oswald SE (2015) A field investigation on the transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater. J Contam Hydrol 181:59–68

    Article  CAS  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):17–71

    Article  Google Scholar 

  • Caballero-Díaz E, Valcárcel Cases M (2016) Analytical methodologies for nanotoxicity assessment. TrAC Trends Anal Chem 84:160–171

    Article  CAS  Google Scholar 

  • Chang M-H, Dosev D, Kennedy IM (2007) ζ-potential analyses using micro-electrical field flow fractionation with fluorescent nanoparticles. Sensors Actuators 124(1):172–178

    Article  CAS  Google Scholar 

  • Chauhan S, Kumar M, Chhoker S, Kaytal SC (2017) A comparative study on structural, vibrational, dielectric and magnetic properties of microcrystalline BiFeO3, nanocrystalline BiFeO3 and core-shell structured BiFeO3@SiO2 nanoparticles. J Alloys Compounds 666:454–467

    Article  CAS  Google Scholar 

  • Chevigny C, Dalmas F, Di Cola E, Gigmes D, Bertin D, Boue F, Jestin J (2011) Polymer-grafted-nanopartciles nanocomposites: dispersion, grafted chain conformation, and rheological behavior. Mcromolecules 44(1):122–133

    Article  CAS  Google Scholar 

  • Ciobanu CS, Iconaru SL, Le Coustumer P, Predoi D (2013) Vibrational investigations of silver-doped hydroxyapatite with antibacterial properties. J Spectroscopy:1:1–1:5

  • Contado C, Blo G, Conato C, Dondi F, Beckett R (2003) Experimental approaches for size-based metal speciation in rivers. J Environ Monit 5(6):845–851

    Article  CAS  Google Scholar 

  • Contado C, Pagnoni A (2010) TiO2 nano- and micro-particles in commercial foundation creams: field flow-fractionation techniques together with ICO-AES and SQW voltammetry for their characterisation. Anal Meth 2(8):1112–1124

    Article  CAS  Google Scholar 

  • Contado C (2017) Field flow fractionation techniques to explore the “nano-world”. Anal Bianal Chem 409(10):2501–2518

    Article  CAS  Google Scholar 

  • De Jalon EG, Blanco-Prieto MJ, Ygartua P, Santoyo S (2001) PLGA microparticles: possible vehicles for topical drug delivery. Int J Pharm 226(1–2):181–184

    Article  Google Scholar 

  • Donovan AR, Adams CD, Ma Y, Stephan C, Eichholz T, Shi H (2016) Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment. Chemosphere 144: 148–153

  • Dubascoux S, Le Hecho I, Potin-Gautier M, Lespes G (2008) On-line and off-line quantification of trace elements associated with colloids by As-Fl-FFF and ICP-MS. Talanta 77:60–65

    Article  CAS  Google Scholar 

  • Dwivedi AD, Dubey SP, Sillanpää M, Kwon Y-N, Lee C, Varma RS (2015) Fate of engineered nanoparticles: implications in the environment. Coord Chem Rev 287:64–68

    Article  CAS  Google Scholar 

  • Edwards T, Gale BK, Frazier AB (2001) Micro scale sample preparation systems for biological analysis. Biomed Microdevices 3(3):211–218

    Article  CAS  Google Scholar 

  • El Hadri H, Gigault J, Chery P, Potin-Gautier M, Lespes G (2014) Optimization of flow field-flow fractionation for the characterization of natural colloids. Anal Bioanal Chem 406:1639–1649

    Article  CAS  Google Scholar 

  • Fadeel B, Garcia-Bennett AE (2010) Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev 62(3):362–374

    Article  CAS  Google Scholar 

  • Faucher S, Lespes G (2017) Field flow fractionation methods for the characterization of natural nanoparticles in waters and soils. Field flow fractionation: principles and applications, Wiley-VCH, in press

  • Faucher S, Charron G, Sivry Y, Lespes G (2017) Characterizing nanoscale objects: how can flow field-flow fractionation meet this challenge, SEP19, 28–30th of March 2017, Paris, France

  • Ferreira da Silva B, Pérez S, Gardinalli P, Singhal RK, Mozeto AA, Barcelo D (2011) Analytical chemistry of metallic nanoparticles in natural environments. Trends Anal Chem 30(3):528–540

    Article  CAS  Google Scholar 

  • Ferrouillat S, Bontemps A, Poncelet O, Soriano O, Gruss J-A (2013) Influence of nanoparticle shape on convestive heat transfer and energetic performance of water-based SiO2 and ZnO nanofluids. Appl Therm Eng 51:839–851

    Article  CAS  Google Scholar 

  • Freiman S, Hooker S, Migler K, Arapalli S (2008) Measurement issues in single wall carbon nanotubes, NIST Materials Science and Engineering Laboratory and NASA-DSC, Special publication 960–19

  • Gavankar S, Suh S, Keller AF (2012) Life cycle assessment at nanoscale: review and recommandation. Int J Life Cycle Assess 17:295–303

    Article  Google Scholar 

  • Gavilan H, Posth O, Bogart LK, Steinhoff U, Gutiérrez L, Morales MP (2017) How shape and internal structure affect the magnetic properties of anisometric magnetite nanoparticles. Acta Materials 125:416–424

    Article  CAS  Google Scholar 

  • Gigault J, Gale BK, Le Hecho I, Lespes G (2011) Nanoparticle characterization by cyclical electrical field-flow fractionation. Anal Chem 83:6565–6572

    Article  CAS  Google Scholar 

  • Giri PK, Bhattacharyya S, Singh DK, Kesavamoorthy R, Panigrahi BK, Nair KGM (2007) Correlation between microstructure and optical properties of ZnO nanoparticles synthetized by ball milling. J Appl Phys 102(9):93515

    Article  CAS  Google Scholar 

  • Green MJ, Behabtu N, Pasquali M, Adams WW (2009) Nanotubes as polymers. Polymer 50(21):4979–4997

    Article  CAS  Google Scholar 

  • Grolimund D, Barmettler K, Borkovec M (2007) Colloidal facilitated transport in natural porous media: Fundamental phenomena and modelling. Colloidal transport in porous media. F. H. Frimmel, F. V. D. Kammer and H. C. Flemming. Berlin, Springer 291

  • Harmand B (1996) Contribution à la compréhension des processus de transport de colloïdes en milieu naturel poreux ou fracturé. Application à la rétention de particules de latex dans un sable, Thèse de doctorat de l’Institut National polytechnique de Lorraine, p 271

  • Hirano S (2009) A current overview of health effect research on nanoparticles. Environ Health Prev Med 14(4):223–225

    Article  Google Scholar 

  • Hetzer B, Burcza A, Gräf V, Walz E, Greiner R (2017) Online-coupling of AF4 and single particle-ICPMS as an analytical approach for the selective detection of nanosilver release from model food packaging films into food simulants. Food Control 80: 113–124

  • ISO/NP TS 800000-4 4: 2011(en) Nanotechnologies-Vocabulary-Part 4: Nanostructured materials (2011) 7pp

  • ISO/TS 80004-2: 2015 Nanotechnologies-Vocabulary-Part 2: Nano-objects (2015) 10 pp

  • Ju-Nam Y, Lead JR (2008) Properties, sources, pathways, and fate of nanoparticles in the environment, manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400(1–3):396–414

    Article  CAS  Google Scholar 

  • Ju-Nam Y, Lead JR (2016), Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Engineered nanoparticles and the Environment: Biophysicochemical Processes and Toxicity, Wiley & Sons, vol 1, 8: 95–117

  • Kaptay G (2012) On the size and shape dependence of the solubility of nano-particles in solutions. Int J Pharm 430:253–257

    Article  CAS  Google Scholar 

  • Kestens V, Bozatzidis V, De Tmmerman P-J, Ramaye Y, Roebben G (2017) Validation of a particle tracking analysis method for the size determination of nano- and micro-particle, J Nanopart Res 19:271 (16pp)

  • Kiseleva IN (2007) The annual session of the council. J Anal Chem 62:906–908

    Article  CAS  Google Scholar 

  • Klucakova M, Kalina M (2015) Composition, particle size, charge, and colloidal stability of pH-fractionated humic acids. J Soils Sediments 15:1900–1908

    Article  CAS  Google Scholar 

  • Kretzschmar R, Sticher H, Hesterberg D (1997) Effects of adsorbed humic acid on surface charge and floculation of kaolinite. Soil Sci Soc Am J 61:101–108

    Article  CAS  Google Scholar 

  • Kumar A, Dhawan A (2013) Genotoxic and carcinogenic potential of engineered nanoparticles: an update. Arch Toxicol 87:1883–1900

    Article  CAS  Google Scholar 

  • Kumar S, Nehra M, Deep A, Kedia D, Dilbaghi N, Kim K-H (2017) Quantum-sized nanomaterials for solar cell applications. Renew Sust Energ Rev 73:821–839

    Article  CAS  Google Scholar 

  • Kystek P, Bäuerlein PS, kooij PJF (2015) Analytical assesment about simultaneous quantification of releasable phramaceutical relevant inorganic nanoparticles in tap water and domestic waste water. J Pharm Biomed Anal 106:116–123

    Article  CAS  Google Scholar 

  • Laborda F, Bolea E, Jimez-Lamana J (2016) Single particle inductively coupled plasma mass spectrometry for the analysis of inorganic engineered nanoparticles in environmental samples. Trends in Environmental Analytical Chemistry 9:15–23

    Article  CAS  Google Scholar 

  • Leach RK, Claverley J, Giusca C, Jones CW, Nimishakavi L, Sun W, Tedaldi M, Yacoot A (2012) Advances in engineering nanometrology at the National Physical Laboratory. Meas Sci Technol 23(7):074002

    Article  Google Scholar 

  • Le Coustumer P, Monthioux M, Oberlin A (1993) Understanding Nicalon fibre. J Eur Ceram Soc 11:95–103

    Article  Google Scholar 

  • Lee S, Bi X, Reed RB et al (2014) Nanoparticle size detection lim- its by single particle ICP-MS for 40 elements. Environ Sci Technol 48:10291–10300

  • Lemine OM, Bououdina MSM, Al-Saie AM, Shafi M, Khatab A, Al-hilali M, Henini M (2011) Synthesis, structural, magnetic and optical properties of nanocrystalline ZnFe2O4. Phys B: Cond Mat 406:1989–1994

    Article  CAS  Google Scholar 

  • Lespes G (2016a) Nanoparticles in environment and health effect. Metallomics: Analytical Techniques and Speciation Methods. In: Metallomics. Wiley-VCH Verlag GmbH & Co. KGaA, pp 319–337. https://doi.org/10.1002/9783527694907.ch11

  • Lespes G (2016b) Nanoparticules et particules colloïdales. L’analyse de l’eau, Dunod, Part 1 A3–4: 73–81

  • Lespes G, Gigault J (2011) Hyphenated analytical techniques for multidimensional characterization of submicron particles: a review. Anal Chim Acta 692:26–41

    Article  CAS  Google Scholar 

  • Li W, He Y, Wu J, Xu J (2012) Extraction and characterization of natural soil nanoparticles from Chinese soils. J Soil Sci 63(5):754–761

    Article  CAS  Google Scholar 

  • Liu J, Detrembleur C, Mornet S, Jérôme C, Duguet E (2015) Design of hybrid nanovehicles for remotely triggered drug release: an overview. J Mater Chem B 3:6117–6147

    Article  CAS  Google Scholar 

  • Liz-Marzan LM (2004) Nanomaterials: formation and color. Mater Today 7(2):26–31

    Article  CAS  Google Scholar 

  • Lojkowski W, Turan R, Proykiva A, Daniszewska A (Eds) (2006) Nanometrology, Nanoforum report on nanotechnology in Europe, nanoparticlesorg, P 127

  • Loosli F, Le Coustumer P, Stoll S (2013) TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability. Water Res 47:6052–6063

    Article  CAS  Google Scholar 

  • Loosli F, Le Coustumer P, Stoll S (2015) Effect of electrolyte valency, alginate concentration and pH on engineered TiO2 nanoparticle stability in aqueous solution. Sci Total Environ 535:28–34

    Article  CAS  Google Scholar 

  • Lozano-Perez S, de Castro Bernal V, Nicholls RJ (2009) Achieving sub-nanometre particle mapping with energy-filtered TE. Ultramicroscopy 109:1217–1228

    Article  CAS  Google Scholar 

  • Lysenko VG, Soloviov VV, Lukinovivh PN, Zolotarevskii SY, Gubskii KL (2011) Nanometrology and features of metrological assurance of measurements of the roughness and relief parameters of nanostructured surfaces. Meas Tech 53:1215–1221

    Google Scholar 

  • Lòpez Martinez MC, Rodes V, Garcia de la Torre J (1984) Estimation of the shape and size of fibrinogen in solution from its hydrodynamic properties using theories for bead models and cylinders. Int J Biol Macromol 6:261–265

    Article  Google Scholar 

  • Maurice PA, and Hochella MF (2008) Nanoscale particles and processes: a new dimension in soil science, vol. 100, Academic Press 123–153

  • McCarthy JF, Zachara JF (1989) Subsurface transport of contaminants. Environ Sci Technol 23(5):496–502

    CAS  Google Scholar 

  • Mitrano DM, Barber A, Bednar A, Westerhoff P, Higgins CP, Ranville JF (2012) Silver nanoparticlecharacterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS). J Anal At Spectrom 27: 1131–1142

  • Moore D (2002) Analytical chemistry—a discipline at the heart of IUPAC. Chem Int 24(4):1–9

    Article  Google Scholar 

  • Moskal A, Payatakes AC (2006) Estimation of the diffusion coefficient of aerosol particle aggregates using Brownian simulation in the continuum regime. Aerosol Sci 37:1081–1101

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao A-J, Quigg A, Santschi PH, Sigg L (2008) Environmental behaviour and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Env Poll 150:5–22

    Article  CAS  Google Scholar 

  • Oxley MP, Lupini AR, Pennycook S (2016) Ultra-high resolution electron microscopy. Rep Prog Phys 80(2):026101. https://doi.org/10.1088/1361-6633/80/2/026101

    Article  CAS  Google Scholar 

  • Palomino D, Yamunake C, Le Coustumer P, Stoll S (2013) Stability of TiO2 nanoparticles in presence of fulvic acids, importance of pH. J Colloid Sci Biotechnol 2(1):1–8

    Article  CAS  Google Scholar 

  • Pan B, Xing B (2012) Applications and implications of manufactured nanoparticles in soil: a review. Eur J Soil Sci 63:437–456

    Article  CAS  Google Scholar 

  • Peeters K, Lespes G, Zuliani T, Scancar J, Milacic R (2016) The fate of iron nanoparticles in environmental waters treated with nanoscale zero-valent iron, feONPs and Fe3O4NPs. Wat Res 94:315–327

    Article  CAS  Google Scholar 

  • Pelley AJ, Tufenkji N (2008) Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media. J Coll Interf Sci 321:74–83

    Article  CAS  Google Scholar 

  • Pitkänen L, Striegel AM (2016) Size-exclusion chromatography of metal nanoarticles and quantum dots. Trends Analyt Chem 80:311–320

    Article  CAS  Google Scholar 

  • Ryan JN, Elimelech M (1996) Colloid mobilization and transport in groundwater, colloids surfaces. Physicochem Eng Asp 107:1–56

    Article  CAS  Google Scholar 

  • Sadik OA, Kariuki V, Okello V, Bushlyar V (2014) Current and emerging technologies for the characterization of nanomaterials. ACS Sustain Chem 2:1707–1716

    Article  CAS  Google Scholar 

  • Saito R, Fujita M, Dresselhaus G, Dresselhaus M (1992) Electronic structure of chiral graphen tubules. Appl Phys Lett 60(18):2204–2206

    Article  CAS  Google Scholar 

  • Soulé S, Bulteau A-L, Faucher S, Haye B, Aimé C, Allouche J, Dupin J-C, Lespes G, Coradin T, Martinez H (2016) Design and cellular fate of bioinspired Au-Ag Nanoshells@hybrid silica nanoparticles. Langmuir 32:10073–10082

    Article  CAS  Google Scholar 

  • Santos Silva H, Rivaton A, Bégué D, Hiorns RC (2015) Correlating geometry of multidiemensional carbon allotropes molecules and stability. Org Electron 26:395–399

    Article  CAS  Google Scholar 

  • Schurtenberg P, Newman ME (1993) Characterization of biological and environmental particles using static and dynamic light scattering. In: Buffle J, van Leeuwen HP (eds) Environmental particles, Vol. 2, IUPAC environmental analytical and physical chemistry series. Lewis, Boca Raton, pp 37–115

    Google Scholar 

  • Sedykh EM, Zuev BK, Gorkin PA (2011) Moscow workshop on analytical chemistry in 2010. J Anal Chem 66(9):876–879

    Article  CAS  Google Scholar 

  • Stone V, Nowack B, Baun A, van den Brink N, von der Kammer F, Dusinska M, Handy R, Hankin S, Hassellov M, Joner E, Fernandes TF (2010) Nanomaterials for environmental studies: classification, reference material issues, and strategies for physic-chemical characterisation. Sci Total Environ 408:1745–1754

    Article  CAS  Google Scholar 

  • Van Tendeloo G, Bals S, Van Aert S, Verbeecl J, Van Dyck D (2012) Advanced electron microscopy for advanced materials. Adv Mater 24:5655–5675

    Article  CAS  Google Scholar 

  • Thomas JM, Leary RK, Eggeman AS, Midgley PA (2015) The rapidly changing face of electron microscopy. Chem Phys Lett 631-632:103–113

    Article  CAS  Google Scholar 

  • Till U, Gaucher M, Amouroux B, Gineste S, Lonetti B, Marty J-D, Mingotaud C, Bria CRM, Ratanathanawongs Williams SK, Violleau F, Mingotaud A-F (2017) Frit inlet field-flow fractionation techniques for the characterization of polyion complex self-assemblies. J Chromatogr A 1481:101–110

    Article  CAS  Google Scholar 

  • Tri N, Caldwell K, Beckett R (2000) Development of electrical field-flow fractionation. Anal Chem 72(8):1823–1829

    Article  CAS  Google Scholar 

  • Valcárcel M, Simonet BM, Cárdenas S (2008) Analytical nanoscience and nanotechnology today and tomorrow. Anal Bioanal Chem 391(5):1881–1887

    Article  CAS  Google Scholar 

  • Van Hee P, Hoeben MA, van der Lans RGJM, van der Wielen LAM (2006) Strategy for selection of methods for separation of bioparticles from particle mixture. Biotechnol Bioeng 94(4):689–709

    Article  CAS  Google Scholar 

  • Wang C, Chi M, Wang G, van der Vliet D, Li D, More K, Wang H-H, Schlueter JA, Markovic NM, Stamenkovic VR (2011) Correlation between surface chemistry and electrocatalytic properties of monodisperses PtxNi1-X nanoparticles, Adv Funct Mater 21(1): 147–152

  • Zattoni A, Roda B, Borghi F, Marassi V, Reschiglian P (2014) Flow field-flow fractionation for the analysis of nanoparticles used in drug delivery. J Pharm Biomed Anal 87:53–61

    Article  CAS  Google Scholar 

  • Zolotov YA (2007) Analytical chemistry: the day today. J Anal Chem 62:912–917

    Article  CAS  Google Scholar 

  • Zolotov YA (2010) Nanoanalytics. J Anal Chem 65:1207–1208

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaëtane Lespes.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faucher, S., Le Coustumer, P. & Lespes, G. Nanoanalytics: history, concepts, and specificities. Environ Sci Pollut Res 26, 5267–5281 (2019). https://doi.org/10.1007/s11356-018-1646-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1646-6

Keywords

Navigation