Skip to main content

Advertisement

Log in

Atmospheric fossil fuel CO2 traced by 14CO2 and air quality index pollutant observations in Beijing and Xiamen, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Radiocarbon (14C) is the most accurate tracer available for quantifying atmospheric CO2 derived from fossil fuel (CO2ff), but it is expensive and time-consuming to measure. Here, we used common hourly Air Quality Index (AQI) pollutants (AQI, PM2.5, PM10, and CO) to indirectly trace diurnal CO2ff variations during certain days at the urban sites in Beijing and Xiamen, China, based on linear relationships between AQI pollutants and CO2ff traced by 14C (\( {\mathrm{C}\mathrm{O}}_{2 ff}{{{}_{-}}^{14}}_{\mathrm{C}} \)) for semimonthly samples obtained in 2014. We validated these indirectly traced CO2ff (CO2ff-in) concentrations against \( {\mathrm{C}\mathrm{O}}_{2 ff}{{{}_{-}}^{14}}_{\mathrm{C}} \) concentrations traced by simultaneous diurnal 14CO2 observations. Significant (p < 0.05) strong correlations were observed between each of the separate AQI pollutants and \( {\mathrm{C}\mathrm{O}}_{2 ff}{{{}_{-}}^{14}}_{\mathrm{C}} \) for the semimonthly samples. Diurnal variations in CO2ff traced by each of the AQI pollutants generally showed similar trends to those of \( {\mathrm{C}\mathrm{O}}_{2 ff}{{{}_{-}}^{14}}_{\mathrm{C}} \), with high agreement at the sampling site in Beijing and relatively poor agreement at the sampling site in Xiamen. AQI pollutant tracers showed high normalized root-mean-square (NRMS) errors for the summer diurnal samples due to low \( {\mathrm{C}\mathrm{O}}_{2 ff}{{{}_{-}}^{14}}_{\mathrm{C}} \) concentrations. After the removal of these summer samples, the NRMS errors for AQI pollutant tracers were in the range of 31.6–64.2%. CO generally showed a high agreement and low NRMS errors among these indirect tracers. Based on these linear relationships, monthly CO2ff averages at the sampling sites in Beijing and Xiamen were traced using CO concentration as a tracer. The monthly CO2ff averages at the Beijing site showed a shallow U-type variation. These results indicate that CO can be used to trace CO2ff variations in Chinese cities with CO2ff concentrations above 5 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Chen H, Winderlich J, Gerbig C, Hoefer A, Rella CW, Crosson ER, Van Pelt AD, Steinbach J, Kolle O, Beck V, Daube BC, Gottlieb EW, Chow VY, Santoni GW, Wofsy SC (2010) High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique. Atmos Meas Tech 3:375–386

    Article  CAS  Google Scholar 

  • Crosson ER (2008) A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor. Appl Phys B Lasers Opt 92:403–408

    Article  CAS  Google Scholar 

  • Djuricin S, Pataki DE, Xu X (2010) A comparison of tracer methods for quantifying CO2 sources in an urban region. J Geophys Res 115:D11303

    Article  CAS  Google Scholar 

  • Duren RM, Miller CE (2012) Measuring the carbon emissions of megacities. Nat Clim Chang 2:560–562

    Article  CAS  Google Scholar 

  • Gamnitzer U, Karstens U, Kromer B, Neubert REM, Meijer HAJ, Schroeder H, Levin I (2006) Carbon monoxide: a quantitative tracer for fossil fuel CO2? J Geophys Res 111:D22302

    Article  CAS  Google Scholar 

  • Global Monitoring Division of the Earth System Research Laboratory (GMD/ESRL) (2017) National Oceanic and Atmospheric Administration, U.S. Department of Commerce. ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_gl.txt

  • Graven HD, Gruber N (2011) Continental-scale enrichment of atmospheric 14CO2 from the nuclear power industry: potential impact on the estimation of fossil fuel-derived CO2. Atmos Chem Phys 11:12339–12349

    Article  CAS  Google Scholar 

  • Graven HD, Guilderson TP, Keeling RF (2012) Observations of radiocarbon in CO2 at seven global sampling sites in the Scripps flask network: analysis of spatial gradients and seasonal cycles. J Geophys Res 117:D02303

    Google Scholar 

  • Gregg JS, Andres RJ, Marland G (2008) China: emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production. Geophys Res Lett 35:L08806

    Article  CAS  Google Scholar 

  • Hsueh DY, Krakauer NY, Randerson JT, Xu X, Trumbore SE, Southon JR (2007) Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America. Geophys Res Lett 34:L02816

    Article  Google Scholar 

  • Huang RJ, Zhang Y, Bozzetti C, Ho KF, Cao JJ, Han Y, Daellenbach KR, Slowik JG, Platt SM, Canonaco F, Zotter P, Wolf R, Pieber SM, Bruns EA, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z, Szidat S, Baltensperger U, Haddad IE, Prévôtm ASH (2014) High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514:218–222

    Article  CAS  Google Scholar 

  • Jull AJT (2007) Radiocarbon dating: AMS method. In: Scott AE (ed) Encyclopedia of quaternary science. Elsevier, Amsterdam, pp 2911–2918

    Chapter  Google Scholar 

  • Kuc T, Rozanski K, Zimnoch M, Necki J, Chmura L, Jelen D (2007) Two decades of regular observations of 14CO2 and 13CO2 content in atmospheric carbon dioxide in Central Europe: long-term changes of regional anthropogenic fossil CO2 emissions. Radiocarbon 49:807–816

    Article  CAS  Google Scholar 

  • Levin I, Hesshaimer V (2000) Radiocarbon-a unique tracer of global carbon cycle dynamics. Radiocarbon 42:69–80

    Article  CAS  Google Scholar 

  • Levin I, Karstens UTE (2007) Inferring high-resolution fossil fuel CO2 records at continental sites from combined 14CO2 and CO observations. Tellus B 59:245–250

    Article  CAS  Google Scholar 

  • Levin I, Schuchard J, Kromer B, Münnich KO (1989) The continental European Suess effect. Radiocarbon 31:431–440

    Article  Google Scholar 

  • Levin I, Kromer B, Schmidt M, Sartorius H (2003) A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations. Geophys Res Lett 30:2194

    Article  CAS  Google Scholar 

  • Levin I, Hammer S, Kromer B, Meinhardt F (2008) Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Sci Total Environ 391:211–216

    Article  CAS  Google Scholar 

  • Liu HZ, Feng JW, Järvi L, Vesala T (2012) Four-year (2006–2009) eddy covariance measurements of CO2 flux over an urban area in Beijing. Atmos Chem Phys 12:7881–7892

    Article  CAS  Google Scholar 

  • Lopez M, Schmidt M, Delmotte M, Colomb A, Gros V, Janssen C, Lehman SJ, Mondelain D, Perrusse O, Ramonet M, Xueref-Remy I, Bousquet P (2013) CO, NOx and 13CO2 as tracers for fossil fuel CO2: results from a pilot study in Paris during winter 2010. Atmos Chem Phys 13:7343–7358

    Article  CAS  Google Scholar 

  • Miller JB, Lehman SJ, Montzka SA, Sweeney C, Miller BR, Wolak C, Dlugokencky EJ, Southon JR, Turnbull JC, Tans PP (2012) Linking emissions of fossil fuel CO2 and other anthropogenic trace gases using atmospheric 14CO2. J Geophys Res 117:D08302

    Article  Google Scholar 

  • Naegler T, Levin I (2009) Biosphere-atmosphere gross carbon exchange flux and the δ13CO2 and Δ14CO2 disequilibria constrained by the biospheric excess radiocarbon inventory. J Geophys Res 114:D17303

    Article  CAS  Google Scholar 

  • Newman S, Xu X, Gurney KR, Kuang HY, Li KF, Jiang X, Keeling R, Feng S, O’Keefe D, Patarasuk R, Wong K, Rao P, Fischer ML, Yung YL (2016) Toward consistency between trends in bottom-up CO2 emissions and top-down atmospheric measurements in the Los Angeles megacity. Atmos Chem Phys 16:3843–3863

    Article  CAS  Google Scholar 

  • Niu Z, Wang S, Chen J, Zhang F, Chen X, He C, Lin L, Yin L, Xu L (2013) Source contributions to carbonaceous species in PM2.5 and their uncertainty analysis at typical urban, peri-urban and background sites in Southeast China. Environ Pollut 181:107–114

    Article  CAS  Google Scholar 

  • Niu Z, Zhou W, Zhang X, Wang S, Zhang D, Lu X, Cheng P, Wu S, Xiong X, Du H, Fu Y (2016a) The spatial distribution of fossil fuel CO2 traced by Δ14C in the leaves of gingko (Ginkgo biloba L.) in Beijing City, China. Environ Sci Pollut Res 23:556–562

    Article  CAS  Google Scholar 

  • Niu Z, Zhou W, Wu S, Cheng P, Lu X, Xiong X, Du H, Fu Y, Wang G (2016b) Atmospheric fossil fuel CO2 traced by Δ14C in Beijing and Xiamen, China: temporal variations, inland/coastal differences and influencing factors. Environ Sci Technol 50:5474–5480

    Article  CAS  Google Scholar 

  • Niu Z, Zhou W, Cheng P, Wu S, Lu X, Xiong X, Du H, Fu Y (2016c) Observations of atmospheric Δ14CO2 at the global and regional background sites in China: implication for fossil fuel CO2 inputs. Environ Sci Technol 50:12122–12128

    Article  CAS  Google Scholar 

  • Norušis JM (2008) SPSS statistics 17.0 guide to data analysis. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Rakowski AZ, Nakamura T, Pazdur A (2008) Variations of anthropogenic CO2 in urban area deduced by radiocarbon concentration in modern tree rings. J Environ Radioact 99:1558–1565

    Article  CAS  Google Scholar 

  • Riley WJ, Hsueh DY, Randerson JT, Fischer ML, Hatch JG, Pataki DE, Wang W, Goulden ML (2008) Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model. J Geophys Res 113:G04002

    Article  CAS  Google Scholar 

  • Slota P, Jull AT, Linick T, Toolin L (1987) Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29:303–306

    Article  CAS  Google Scholar 

  • Song Y, Zhang Y, Xie S, Zeng L, Zheng M, Salmon LG, Shao M, Slanina S (2006) Source apportionment of PM2.5 in Beijing by positive matrix factorization. Atmos Environ 40(8):1526–1537

    Article  CAS  Google Scholar 

  • Streets DG, Zhang Q, Wang L, He K, Hao J, Wu Y, Tang Y, Carmichael GR (2006) Revisiting China’s CO emissions after the transport and chemical evolution over the Pacific (TRACE-P) mission: synthesis of inventories, atmospheric modeling, and observations. J Geophys Res 111:D14306

    Article  CAS  Google Scholar 

  • Stuiver M, Polach HA (1977) Discussion: reporting of 14C data. Radiocarbon 19:355–363

    Article  Google Scholar 

  • Turnbull JC, Miller JB, Lehman SJ, Tans PP, Sparks RJ, Southon J (2006) Comparison of 14CO2, CO, and SF6 as tracers for recently added fossil fuel CO2 in the atmosphere and implications for biological CO2 exchange. Geophys Res Lett 33:L01817

    Article  CAS  Google Scholar 

  • Turnbull JC, Lehman SJ, Miller JB, Sparks RJ, Southon JR, Tans PP (2007) A new high precision 14CO2 time series for North American continental air. J Geophys Res Atmos 112:D11310

    Article  CAS  Google Scholar 

  • Turnbull J, Rayner P, Miller J, Naegler T, Ciais P, Cozic A (2009) On the use of 14CO2 as a tracer for fossil fuel CO2: quantifying uncertainties using an atmospheric transport model. J Geophys Res 114:D22302

    Article  CAS  Google Scholar 

  • Turnbull JC, Tans PP, Lehman SJ, Baker D, Conway TJ, Chung YS, Gregg J, Miller JB, Southon JR, Zhou LX (2011) Atmospheric observations of carbon monoxide and fossil fuel CO2 emissions from East Asia. J Geophys Res 116:D24306

    Article  CAS  Google Scholar 

  • Turnbull JC, Keller ED, Norris MW, Wiltshire RM (2016) Independent evaluation of point source fossil fuel CO2 emissions to better than 10%. PNAS 113(37):10287–10291

    Article  CAS  Google Scholar 

  • van der Laan S, Karstens U, Neubert REM, Van Der Laan-Luijkx IT, Meijer HAJ (2010) Observation-based estimates of fossil fuel-derived CO2 emissions in the Netherlands using Δ14C, CO and 222Radon. Tellus B 62:389–402

    Article  CAS  Google Scholar 

  • Verhulst KR, Karion A, Kim J, Salameh PK, Keeling RF, Newman S, Miller J, Sloop C, Pongetti T, Rao P, Wong C, Hopkins FM, Yadav V, Weiss RF, Duren RM, Miller CE (2017) Carbon dioxide and methane measurements from the Los Angeles Megacity Carbon Project – part 1: calibration, urban enhancements, and uncertainty estimates. Atmos Chem Phys 17:8313–8341

    Article  CAS  Google Scholar 

  • Vogel FR, Hammer S, Steinhof A, Kromer B, Levin I (2010) Implication of weekly and diurnal 14C calibration on hourly estimates of CO-based fossil fuel CO2 at a moderately polluted site in southwestern Germany. Tellus B 62(5):512–520

    Article  CAS  Google Scholar 

  • Vogel FR, Levin I, Worthy DEJ (2013) Implications for deriving regional fossil fuel CO2 estimates from atmospheric observations in a hot spot of nuclear power plant 14CO2 emissions. Radiocarbon 55:1556–1572

    Article  CAS  Google Scholar 

  • Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194

    Article  Google Scholar 

  • Yang Y, Tao J, Zhu L, Zhang Z, Wang Q, Cao J (2017) Characterization of chemical compositions of PM2.5 and its impact on scattering coefficients at a background site over Western China. Acta Sci Circumst 37(4):1216–1226 (in Chinese)

    CAS  Google Scholar 

  • Yu L, Wang G, Zhang R, Zhang L, Song Y, Wu B, Li X, An K, Chu J (2013) Characterization and source apportionment of PM2.5 in an urban environment in Beijing. Aerosol Air Qual Res 13:574–583

    Article  CAS  Google Scholar 

  • Zhang W, Guo JH, Sun YL, Yuan H, Zhuang GS, Zhuang YH, Hao ZP (2007) Source apportionment for urban PM10 and PM2.5 in the Beijing area. Chin Sci Bull 52(5):608–615

    Article  CAS  Google Scholar 

  • Zhang R, Jing J, Tao J, Hsu SC, Wang G, Cao J, Lee LCS, Zhu L, Chen Z, Zhao Y, Shen Z (2013) Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective. Atmos Chem Phys 13:7053–7074

    Article  CAS  Google Scholar 

  • Zhou W, Zhao X, Lu X, Liu L, Wu Z, Cheng P, Zhao W, Huang C (2006) The 3MV multi-element AMS in Xi’an, China: unique features and preliminary test. Radiocarbon 48(2):285–293

    Article  CAS  Google Scholar 

  • Zhou W, Wu S, Huo W, Xiong X, Cheng P, Lu X, Niu Z (2014) Tracing fossil fuel CO2 using Δ14C in Xi’an City, China. Atmos Environ 94:538–545

    Article  CAS  Google Scholar 

  • Zondervan A, Meijer HAJ (1996) Isotopic characterisation of CO2 sources during regional pollution events using isotopic and radiocarbon analysis. Tellus B 48:601–612

    Article  Google Scholar 

Download references

Acknowledgments

The anonymous reviewers are acknowledged for their valuable comments.

Funding

This work was jointly supported by the National Natural Science Foundation of China (No. 41773141, 41573136, 41730108); CAS “Light of West China” Program (XAB2015A02); the Youth Innovation Promotion Association CAS (2016360); the Ministry of Science and Technology of the People’s Republic of China, the MOST (LQ1301, 2016YFE0109500); the Chinese Academy of Science (QYZDY-SSW-DQC001, ZDBS-SSW-DQC001, Y354011480, and SKLLQGPY1610); and the Natural Science Foundation of Shaanxi Province, China (2014JQ2-4018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijian Zhou.

Additional information

Responsible editor: Constantini Samara

Electronic supplementary material

ESM 1

(DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Z., Zhou, W., Feng, X. et al. Atmospheric fossil fuel CO2 traced by 14CO2 and air quality index pollutant observations in Beijing and Xiamen, China. Environ Sci Pollut Res 25, 17109–17117 (2018). https://doi.org/10.1007/s11356-018-1616-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1616-z

Keywords

Navigation