Study on hydrothermal deactivation of Pt/MnO x -CeO2 for NO x -assisted soot oxidation: redox property, surface nitrates, and oxygen vacancies

Research Article
  • 40 Downloads

Abstract

The study mainly focuses on surface properties to investigate the deactivation factors of Pt/MnO x -CeO2 by H2 temperature-programmed reduction, CO chemical adsorption, NO x -temperature-programmed desorption (TPD), O2-TPD, NO temperature-programmed oxidation, SEM, TEM, in situ diffuse reflectance infrared Fourier transform spectra, Raman, and thermogravimetric methods. The results show that there are three main factors to lead to hydrothermal deactivation of the catalyst: redox property, oxygen vacancy, and surface nitrates. The loss of oxygen vacancies decreases the generation and desorption of active oxygen and that of surface nitrates weakens the production of NO2 and surface peroxides (-O2). These factors greatly result in the damage of the C-NO2-O2 cooperative reaction.

Keywords

Soot oxidation Hydrothermal aging Deactivation Surface nitrates Oxygen vacancies 

Supplementary material

11356_2018_1582_MOESM1_ESM.doc (2.2 mb)
ESM 1 (DOC 2217 kb)

References

  1. Andriopoulou C, Trimpalis A, Petallidou KC, Sgoura A, Efstathiou AM, Boghosian S (2017) Structural and redox properties of Ce1-xZrxO2-δ and Ce0.8Zr0.15RE0.05O2-δ (RE: La, Nd, Pr, Y) solids studied by high temperature in situ Raman spectroscopy. J Phys Chem C 121:7931–7943CrossRefGoogle Scholar
  2. Aneggi E, Leitenburg C, Llorca J, Trovarelli A (2012) Higher activity of diesel soot oxidation over polycrystalline ceria and ceria-zirconia solid solutions from more reactive surface planes. Catal Today 197:119–126CrossRefGoogle Scholar
  3. Aneggi E, Wiater D, Leitenburg C, Llorca J, Trovarelli A (2014) Shape-dependent activity of ceria in soot combustion. ACS Catal 4:172–181CrossRefGoogle Scholar
  4. Arena F (2014) Multipurpose composite MnCeOx catalysts for environmental applications. Catal Sci Technol 4:1890–1898CrossRefGoogle Scholar
  5. Atribak I, Azambre B, Lόpeza AB, García-García A (2009) Effect of NOx adsorption/desorption over ceria-zirconia catalysts on the catalytic combustion of model soot. Appl Catal B 92:126–137CrossRefGoogle Scholar
  6. Azambre B, Collura S, Darcy P, Trichard JM, Costa PD, García-García A, Bueno-López A (2011) Effects of a Pt/Ce0.68Zr0.32O2 catalyst and NO2 on the kinetics of diesel soot oxidation from thermogravimetric analyses. Fuel Process Technol 92:363–371CrossRefGoogle Scholar
  7. Bassou B, Guilhaume N, Lombaert K, Mirodatos C, Bianchi D (2010) Experimental microkinetic approach of the catalytic oxidation of diesel soot by ceria using temperature-programmed experiments. Part 1: impact and evolution of the ceria/soot contacts during soot oxidation. Energy Fuel 24:4766–4780CrossRefGoogle Scholar
  8. Binet C, Daturi M, Lavalley JC (1999) IR study of polycrystalline ceria properties in oxidised and reduced states. Catal Today 50:207–225CrossRefGoogle Scholar
  9. Bozon-Verduraz F, Bensalem A (1994) IR studies of cerium dioxide-influence of impurities and defects. J Chem Soc Faraday Trans 90:653–657CrossRefGoogle Scholar
  10. Conesa JC (1995) Computer modeling of surfaces and defects on cerium dioxide. Surf Sci 339:337–352CrossRefGoogle Scholar
  11. Darcy P, Costa PD, Mellottée H, Trichard JM, Djéga-Mariadassou G (2007) Kinetics of catalyzed and non-catalyzed oxidation of soot from a diesel engine. Catal Today 119:252–256CrossRefGoogle Scholar
  12. Durgasri DN, Vinodkumar T, Lin FJ, Alxneit I, Reddy BM (2014) Gadolinium doped cerium oxide for soot oxidation: influence of interfacial metal-support interactions. Appl Surf Sci 314:592–598CrossRefGoogle Scholar
  13. Fallah JE, Boujana S, Dexpert H, Kiennemann A, Majerus J, Touret O, Villain F, le Normand F (1994) Redox processes on pure ceria and on Rh/CeO2 catalyst monitored by X-ray absorption (fast acquisition mode). J Phys Chem 98:5522–5533CrossRefGoogle Scholar
  14. Imran A, Varman M, Masjuki HH, Kalam MA (2013) Review on alcohol fumigation on diesel engine: a viable alternative dual fuel technology for satisfactory engine performance and reduction of environment concerning emission. Renew Sust Energ Rev 26:739–751CrossRefGoogle Scholar
  15. Jeguirim M, Tschamber V, Brilhac JF (2009a) Kinetics of catalyzed and non-catalyzed soot oxidation with nitrogen dioxide under regeneration particle trap conditions. J Chem Technol Biotechnol 84:770–776CrossRefGoogle Scholar
  16. Jeguirim M, Tschamber V, Brilhac JF (2009b) Kinetics and mechanism of the oxidation of carbon by NO2 in the presence of water vapor. Inc Int J Chem Kinet 41:236–244CrossRefGoogle Scholar
  17. Jeguirim M, Tschamber V, Villani K, Brilhac JF, Martens JA (2009c) Mechanistic study of carbon oxidation with NO2 and O2 in the presence of a Ru/Na-Y catalyst. Chem Eng Technol 32:830–834CrossRefGoogle Scholar
  18. Katta L, Sudarsanam P, Thrimurthulu G, Reddy BM (2010) Doped nanosized ceria solid solutions for low temperature soot oxidation: zirconium versus lanthanum promoters. Appl Catal B 101:101–108CrossRefGoogle Scholar
  19. Körner R, Ricken M, Nölting J, Riess I (1989) Phase transformations in reduced ceria: determination by thermal expansion measurements. J Solid State Chem 78:136–147CrossRefGoogle Scholar
  20. Liu S, Wu XD, Weng D, Li M, Lee HR (2012) Combined promoting effects of platinum and MnOx-CeO2 supported on alumina on NOx-assisted soot oxidation: thermal stability and sulfur resistance. Chem Eng J 203:25–35CrossRefGoogle Scholar
  21. Liu S, Wu XD, Weng D, Li M, Fan J (2013) Sulfation of Pt/Al2O3 catalyst for soot oxidation: high utilization of NO2 and oxidation of surface oxygenated complexes. Appl Catal B 138-139:199–211CrossRefGoogle Scholar
  22. Pui DYH, Chen SC, Zuo ZL (2014) PM2.5 in China: measurements, sources, visibility and health effects, and mitigation. Particuology 13:1–26CrossRefGoogle Scholar
  23. Putla S, Amin MH, Reddy BM, Nafady A, Al Farhan KA, Bhargava SK (2015) MnOx nanoparticle-dispersed CeO2 nanocubes: a remarkable heteronanostructured system with unusual structural characteristics and superior catalytic performance. ACS Appl Mater Interfaces 7:16525–16535CrossRefGoogle Scholar
  24. Quiroz J, Giraudon JM, Gervasini A, Dujardin C, Lancelot C, Trentesaux M, Lamonier JF (2015) Total oxidation of formaldehyde over MnOx-CeO2 catalysts: the effect of acid treatment. ACS Catal 5:2260–2269CrossRefGoogle Scholar
  25. Sayle T, Parker S, Catlow RC (1992) Surface oxygen vacancy formation on CeO2 and its role in the oxidation of carbon-monoxide. J Chem Soc Chem Commun:977–978Google Scholar
  26. Setiabudi A, Chen JL, Mul G, Makkee M, Moulijin JA (2004a) CeO2 catalysed soot oxidation: the role of active oxygen to accelerate the oxidation conversion. Appl Catal B 51:9–19CrossRefGoogle Scholar
  27. Setiabudi A, Makkee M, Moulijn JA (2004b) The role of NO2 and O2 in the accelerated combustion of soot in diesel exhaust gases. Appl Catal B 50:185–194CrossRefGoogle Scholar
  28. Sreeremya TS, Krishnan A, Remani KC, Patil KR, Brougham DF, Ghosh S (2015) Shape-selective oriented cerium oxide nanocrystals permit assessment of the effect of the exposed facets on catalytic activity and oxygen storage capacity. ACS Appl Mater Interfaces 7:8545–8555CrossRefGoogle Scholar
  29. Taniguchi T, Watanabe T, Sugiyama N, Subramani AK, Wagata H, Matsushita N, Yoshimura M (2009) Identifying defect in ceria-based nanocrystals by UV resonance Raman spectroscopy. J Phys Chem C 113:19789–19793CrossRefGoogle Scholar
  30. Wang XY, Ran L, Dai Y, Lu YJ, Dai QG (2014) Removal of Cl adsorbed on Mn-Ce-La solid solution catalysts during CVOC combustion. J Colloid Interface Sci 426:324–332CrossRefGoogle Scholar
  31. Wierzbicka A, Nilsson PT, Rissler J, Sallsten G, Xu YY, Pagels JH, Albin M, Österberg K, Strandberg B, Eriksson A, Bohgard M, Bergemalm-Rynell K, Gudmundsson A (2014) Detailed diesel exhaust characteristics including particle surface area and lung deposited dose for better understanding of health effects in human chamber exposure studies. Atmos Environ 86:212–219CrossRefGoogle Scholar
  32. Wu XD, Lin F, Xu HB, Weng D (2010a) Effects of adsorbed and gaseous NOx species on catalytic oxidation of diesel soot with MnOx-CeO2 mixed oxides. Appl Catal B 96:101–109CrossRefGoogle Scholar
  33. Wu M, Wang XY, Dai QG, Gu YX, Li D (2010b) Low temperature catalytic combustion chlorobenzene over Mn-Ce-O/γ-Al2O3 mixed oxides catalyst. Catal Today 158:336–342CrossRefGoogle Scholar
  34. Zhang HL, Wang JL, Cao Y, Wang YJ, Gong MC, Chen YQ (2015a) Effect of Y on improving the thermal stability of MnOx-CeO2 catalysts for diesel soot oxidation. Chin J Catal 36:1333–1341CrossRefGoogle Scholar
  35. Zhang HL, Zhu Y, Wang SD, Zhao M, Gong MC, Chen YQ (2015b) Activity and thermal stability of Pt/Ce0.64Mn0.16R0.2Ox (R = Al, Zr La, or Y) for soot and NO oxidation. Fuel Process Technol 137:38–47CrossRefGoogle Scholar
  36. Zhang HL, Wang JL, Zhang YH, Jiao Y, Ren CJ, Gong MC, Chen YQ (2016) A study on H2-TPR of Pt/Ce0.27Zr0.73O2 and Pt/Ce0.27Zr0.70La0.03Ox for soot oxidation. Appl Surf Sci 377:48–55CrossRefGoogle Scholar
  37. Zhang HL, Hou ZY, Zhu Y, Wang JL, Chen YQ (2017a) Sulfur deactivation mechanism of Pt/MnOx-CeO2 for soot oxidation: surface property study. Appl Surf Sci 396:560–565CrossRefGoogle Scholar
  38. Zhang HL, Yuan SD, Wang JL, Gong MC, Chen YQ (2017b) Effects of contact model and NOx on soot oxidation activity over Pt/MnOx-CeO2 and the reaction mechanisms. Chem Eng J 327:1066–1076CrossRefGoogle Scholar
  39. Zheng MG, Gao H, Zhu XH (2011) Research on developing DPF blowback heating regeneration device. Procedia Eng 16:661–666CrossRefGoogle Scholar
  40. Zouaoui N, Issa M, Kehrli D, Jeguirim M (2012) CeO2 catalytic activity for soot oxidation under NO/O2 in loose and tight contact. Catal Today 189:65–69CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemical EngineeringSichuan UniversityChengduPeople’s Republic of China
  2. 2.College of ChemistrySichuan UniversityChengduPeople’s Republic of China

Personalised recommendations