Skip to main content

Advertisement

Log in

Simultaneous immobilization of cadmium and lead in contaminated soils by hybrid bio-nanocomposites of fungal hyphae and nano-hydroxyapatites

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Self-aggregation of bulk nano-hydroxyapatites (n-HAPs) undermines their immobilization efficiencies of heavy metals in the contaminated soils. Here, the low-cost, easily obtained, and environment-friendly filamentous fungi have been introduced for the bio-matrices of the hybrid bio-nanocomposites to potentially solve such problem of n-HAPs. According to SEM, TEM, XRD, and FT-IR analyses, n-HAPs were successfully coated onto the fungal hyphae and their self-aggregation was improved. The immobilization efficiencies of diethylene-triamine-pentaacetic acid (DTPA)-extractable Cd and Pb in the contaminated soils by the bio-nanocomposites were individually one to four times of that by n-HAPs or the fungal hyphae. Moreover, the Aspergillus niger-based bio-nanocomposite (ANHP) was superior to the Penicillium Chrysogenum F1-based bio-nanocomposite (PCHP) in immobilization of Cd and Pb in the contaminated soils. In addition, the results of XRD showed that one of the potential mechanisms of metal immobilization by the hybrid bio-nanocomposites was dissolution of n-HAPs followed by precipitation of new metal phosphate minerals. Our results suggest that the hybrid bio-nanocomposite (ANHP) can be recognized as a promising soil amendment candidate for effective remediation on the soils simultaneously contaminated by Cd and Pb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alvarezayuso E, Garciasanchez A (2003) Sepiolite as a feasible soil additive for the immobilization of cadmium and zinc. Sci Total Environ 305:1–12

    Article  CAS  Google Scholar 

  • Bachouâ H, Othmani M, Coppel Y, Fatteh N, Debbabi M, Badraoui B (2014) Structural and thermal investigations of a Tunisian natural phosphate rock. J Mater Environ Sci 5:1152–1159

    Google Scholar 

  • Badireddy AR, Chellam S, Gassman PL, Engelhard MH, Lea AS, Rosso KM (2010) Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions. Water Res 44:4505–4516

    Article  CAS  Google Scholar 

  • Bigall NC, Reitzig M, Naumann W, Simon P, van Pée KH, Eychmüller A (2008) Fungal templates for noble-metal nanoparticles and their application in catalysis. Angew Chem Int Ed 47:7876–7879

    Article  CAS  Google Scholar 

  • Chai LY, Wang JX, Wang HY, Zhang LY, Yu WT, Mai LQ (2015) Porous carbonized graphene-embedded fungus film as an interlayer for superior Li–S batteries. Nano Energy 17:224–232

    Article  CAS  Google Scholar 

  • Chai LY, Tang JW, Liao YP, Yang ZH, Liang LF, Li QZ, Wang HY, Yang WC (2016) Biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans and its application in arsenic immobilization in the contaminated soil. J Soils Sediments 16:2430–2438

    Article  CAS  Google Scholar 

  • Chai LY, Li H, Yang ZH, Min XB, Liao Q, Liu Y, Men SH, Yan YN, Xu JX (2017a) Heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan, China: distribution, contamination, and ecological risk assessment. Environ Sci Pollut Res Int 24:874–885

    Article  CAS  Google Scholar 

  • Chai LY, Wang X, Wang HY, Yang WC, Liao Q, Wu YJ (2017b) Formation of one-dimensional composites of poly(m-phenylenediamine)s based on Streptomyces for adsorption of hexavalent chromium. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-13017-11500-13762

  • Chen JH, Wang YJ, Zhou DM, Cui YX, Wang SQ, Chen YC (2010a) Adsorption and desorption of Cu (II), Zn (II), Pb (II), and Cd (II) on the soils amended with nanoscale hydroxyapatite. Environ Prog Sustain Energy 29:233–241

    Article  CAS  Google Scholar 

  • Chen SB, Ma YB, Chen L, Xian K (2010b) Adsorption of aqueous Cd2+, Pb2+, Cu2+ ions by nano-hydroxyapatite: single- and multi-metal competitive adsorption study. Geochem J 44:233–239

    Article  CAS  Google Scholar 

  • Corami A, Mignardi S, Ferrini V (2008) Cadmium removal from single- and multi-metal (Cd + Pb + Zn + Cu) solutions by sorption on hydroxyapatite. J Colloid Interface Sci 317:402–408

    Article  CAS  Google Scholar 

  • Cui L, Li L, Zhang A, Pan G, Bao D, Chang A (2011) Biochar amendment greatly reduces rice Cd uptake in a contaminated paddy soil: a two-year field experiment. Bioresources 6:2605–2618

    CAS  Google Scholar 

  • Deng XH, Chai LY, Yang ZH, Tang CJ, Tong HX, Yuan PF (2012) Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1. J Hazard Mater 233:25–32

    Article  Google Scholar 

  • Deng XH, Chai LY, Yang ZH, Tang CJ, Wang YY, Shi Y (2013) Bioleaching mechanism of heavy metals in the mixture of contaminated soil and slag by using indigenous Penicillium chrysogenum strain F1. J Hazard Mater 248:107–114

    Article  Google Scholar 

  • Fischer G, Braun S, Thissen R, Dott W (2006) FT-IR spectroscopy as a tool for rapid identification and intra-species characterization of airborne filamentous fungi. J Microbiol Methods 64:63–77

    Article  CAS  Google Scholar 

  • General Administration of Quality Supervision Inspection and Quarantine of the People’s Republic of China (2009) Soil quality—analysis of available lead and cadmium contents in soils—atomic absorption spectrometry GB/T 23739-2009. General Administration of Quality Supervision Inspection and Quarantine of the People’s Republic of China, pp. 1–6

  • Gray CW, Dunham SJ, Dennis PG, Zhao FJ, McGrath SP (2006) Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environ Pollut 142:530–539

    Article  CAS  Google Scholar 

  • He M, Shi H, Zhao X, Yu Y, Qu B (2013) Immobilization of Pb and Cd in contaminated soil using nano-crystallite hydroxyapatite. Procedia Environ Sci 18:657–665

    Article  CAS  Google Scholar 

  • Iqbal M, Saeed A, Zafar SI (2009) FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd(2+) and Pb(2+) removal by mango peel waste. J Hazard Mater 164:161–171

    Article  CAS  Google Scholar 

  • Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68:1996–2002

    Article  CAS  Google Scholar 

  • Kalfus J, Jancar J (2007) Immobilization of polyvinylacetate macromolecules on hydroxyapatite nanoparticles. Polymer 48:3935–3937

    Article  CAS  Google Scholar 

  • Khaokaew S, Chaney RL, Landrot G, Ginder-Vogel M, Sparks DL (2011) Speciation and release kinetics of cadmium in an alkaline paddy soil under various flooding periods and draining conditions. Environ Sci Technol 45:4249–4255

    Article  CAS  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Manag 28:215–225

    Article  CAS  Google Scholar 

  • Laperche V, Traina SJ, Gaddam P, Logan TJ (1996) Chemical and mineralogical characterizations of Pb in a contaminated soil: reactions with synthetic apatite. Environ Sci Technol 30:3321–3326

    Article  CAS  Google Scholar 

  • Lee T-M, Lai H-Y, Chen Z-S (2004) Effect of chemical amendments on the concentration of cadmium and lead in long-term contaminated soils. Chemosphere 57:1459–1471

    Article  CAS  Google Scholar 

  • Lee SH, Lee JS, Choi YJ, Kim JG (2009) In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere 77:1069–1075

    Article  CAS  Google Scholar 

  • Li Z, Chung SW, Nam JM, Ginger DS, Mirkin CA (2003) Living templates for the hierarchical assembly of gold nanoparticles. Angew Chem Int Ed Engl 42:2306–2309

    Article  Google Scholar 

  • Li P, Wang X, Zhang T, Zhou D, He Y (2008) Effects of several amendments on rice growth and uptake of copper and cadmium from a contaminated soil. J Environ Sci 20:449–455

    Article  Google Scholar 

  • Li J, Sun H, Sun D, Yao Y, Yao F, Yao K (2011) Biomimetic multicomponent polysaccharide/nano-hydroxyapatite composites for bone tissue engineering. Carbohydr Polym 85:885–894

    Article  CAS  Google Scholar 

  • Liao Y, Min X, Yang Z, Chai L, Zhang S, Wang Y (2014) Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation. Environ Sci Pollut Res Int 21:379–388

    Article  CAS  Google Scholar 

  • Lin XY, Fan HS, Li XD, Tang M, Zhang XD (2005) Evaluation of bioactivity and cytocompatibility of nano-hydroxyapatite/collagen composite in vitro. Key Eng Mater 284-286:553–556

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686

    Article  CAS  Google Scholar 

  • Liu R, Zhao D (2007) In situ immobilization of Cu(II) in soils using a new class of iron phosphate nanoparticles. Chemosphere 68:1867–1876

    Article  CAS  Google Scholar 

  • Liu RQ, Zhao DY (2013) Synthesis and characterization of a new class of stabilized apatite nanoparticles and applying the particles to in situ Pb immobilization in a fire-range soil. Chemosphere 91:594–601

    Article  CAS  Google Scholar 

  • Liu H, Zhang KJ, Chai LY, Yang ZH, Yang WC, Liao Q, Li H, Liu Y (2017) A comparative evaluation of different sediment quality guidelines for metal and metalloid pollution in the Xiangjiang River, Hunan, China. Arch Environ Contam Toxicol 73:593–606

    Article  CAS  Google Scholar 

  • Mahar A, Wang P, Li R, Zhang Z (2015) Immobilization of lead and cadmium in contaminated soil using amendments: a review. Pedosphere 25:555–568

    Article  Google Scholar 

  • Makino T, Sugahara K, Sakurai Y, Takano H, Kamiya T, Sasaki K, Itou T, Sekiya N (2006) Remediation of cadmium contamination in paddy soils by washing with chemicals: selection of washing chemicals. Environ Pollut 144:2–10

    Article  CAS  Google Scholar 

  • Min XB, Wang YY, Chai LY, Yang ZH, Liao Q (2017) High-resolution analyses reveal structural diversity patterns of microbial communities in chromite ore processing residue (COPR) contaminated soils. Chemosphere 183:266–276

    Article  CAS  Google Scholar 

  • Ministry of Environmental Protection of the People’s Republic of China (1995) Environmental quality standard for soils GB15618–1995. Ministry of Environmental Protection of the People's Republic of China, Beijing, pp 1–4

    Google Scholar 

  • Miretzky P, Fernandez-Cirelli A (2008) Phosphates for Pb immobilization in soils: a review. Environ Chem Lett 6:121–133

    Article  CAS  Google Scholar 

  • Niu LL, Yang FX, Xu C, Yang HY, Liu WP (2013) Status of metal accumulation in farmland soils across China: from distribution to risk assessment. Environ Pollut 176:55–62

    Article  CAS  Google Scholar 

  • Ok YS, Lee H-N, Jung J-H, Song H-S, Chung N, Lim S-K, Kim J-G (2004) Chemical characterization and bioavailability of cadmium in artificially and naturally contaminated soils. J Appl Biol Chem 47:143–146

    CAS  Google Scholar 

  • Pramanik N, Tarafdar A, Pramanik P (2007) Capping agent-assisted synthesis of nanosized hydroxyapatite: comparative studies of their physicochemical properties. J Mater Process Technol 184:131–138

    Article  CAS  Google Scholar 

  • Rehman A, Majeed MI, Ihsan A, Hussain SZ, Saif-ur-Rehman GMA, Khalid ZM, Hussain I (2011) Living fungal hyphae-templated porous gold microwires using nanoparticles as building blocks. J Nanopart Res 13:6747–6754

    Article  CAS  Google Scholar 

  • Ren J, Zhao P, Ren T, Gu S, Pan K (2008) Poly (D,L-lactide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering and biocompatibility evaluation. J Mater Sci Mater Med 19:1075–1082

    Article  CAS  Google Scholar 

  • Simmons RW, Pongsakul P, Saiyasitpanich D, Klinphoklap S (2005) Elevated levels of cadmium and zinc in Paddy soils and elevated levels of cadmium in rice grain downstream of a zinc mineralized area in Thailand: implications for public health. Environ Geochem Health 27:501–511

    Article  CAS  Google Scholar 

  • Sugunan A, Melin P, Schnürer J, Hilborn JG, Dutta J (2007) Nutrition-driven assembly of colloidal nanoparticles: growing fungi assemble gold nanoparticles as microwires. Adv Mater 19:77–81

    Article  CAS  Google Scholar 

  • Wang ZX, Chai LY, Yang ZH, Wang YY, Wang HY (2010) Identifying sources and assessing potential risk of heavy metals in soils from direct exposure to children in a mine-impacted city, Changsha, China. J Environ Qual 39:1616–1623

    Article  CAS  Google Scholar 

  • Wang HY, Li XR, Chai LY, Zhang LY (2015) Nano-functionalized filamentous fungus hyphae with fast reversible macroscopic assembly & disassembly features. Chem Commun (Camb) 51:8524–8527

    Article  CAS  Google Scholar 

  • Wang D, Xie Y, Jaisi DP, Jin Y (2016) Effects of low-molecular-weight organic acids on the dissolution of hydroxyapatite nanoparticles. Environ Sci Nano 3:768–779

    Article  CAS  Google Scholar 

  • Waterlot C, Pruvot C, Ciesielski H, Douay F (2011) Effects of a phosphorus amendment and the pH of water used for watering on the mobility and phytoavailability of Cd, Pb and Zn in highly contaminated kitchen garden soils. Ecol Eng 37:1081–1093

    Article  Google Scholar 

  • Xu Y, Schwartz FW, Traina SJ (1994) Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces. Environ Sci Technol 28:1472–1480

    Article  CAS  Google Scholar 

  • Yang ZH, Liu L, Chai LY, Liao YP, Yao WB, Xiao RY (2015) Arsenic immobilization in the contaminated soil using poorly crystalline Fe-oxyhydroxy sulfate. Environ Sci Pollut Res Int 22:12624–12632

    Article  CAS  Google Scholar 

  • Yang S, Cao J, Li F, Peng X, Peng Q, Yang Z, Chai L (2016) Field evaluation of the effectiveness of three industrial by-products as organic amendments for phytostabilization of a Pb/Zn mine tailings. Environ Sci Process Impacts 18:95–103

    Article  CAS  Google Scholar 

  • Yang WC, Tian SQ, Wu JX, Chai LY, Liao Q (2017a) Distribution and behavior of arsenic during the reducing-matting smelting process. JOM 69:1077–1083

    Article  CAS  Google Scholar 

  • Yang ZH, Wu ZJ, Liao YP, Liao Q, Yang WC, Chai LY (2017b) Combination of microbial oxidation and biogenic schwertmannite immobilization: a potential remediation for highly arsenic-contaminated soil. Chemosphere 181:1–8

    Article  CAS  Google Scholar 

  • Yuan YN, Chai LY, Yang ZH, Yang WC (2016) Simultaneous immobilization of lead, cadmium, and arsenic in combined contaminated soil with iron hydroxyl phosphate. J Soils Sediments 17:432–439

    Article  Google Scholar 

  • Yuan YN, Chai LY, Yang ZH, Wu RP, Liu H, Liang LF, Shi W (2017) Immobilization of Cd and Pb in soils by polymeric hydroxyl ferric phosphate. Trans Nonferrous Metals Soc China 27:1165–1171

    Article  CAS  Google Scholar 

  • Zhang Z, Li M, Chen W, Zhu S, Liu N, Zhu L (2010) Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite. Environ Pollut 158:514–519

    Article  CAS  Google Scholar 

  • Zhang LY, Wang YY, Peng B, Yu WT, Wang HY, Wang T, Deng BW, Chai LY, Zhang K, Wang JX (2014a) Preparation of a macroscopic, robust carbon-fiber monolith from filamentous fungi and its application in Li–S batteries. Green Chem 16:3926

    Article  CAS  Google Scholar 

  • Zhang SJ, Yang ZH, Wu BL, Wang YY, Wu RP, Liao YP (2014b) Removal of Cd and Pb in calcareous soils by using Na2EDTA recycling washing. CLEAN – Soil Air Water 42:641–647

    Article  CAS  Google Scholar 

  • Zhang LY, Li XR, Wang MR, He YJ, Chai LY, Huang JY, Wang HY, Wu XW, Lai YK (2016) Highly flexible and porous nanoparticle-loaded films for dye removal by graphene oxide-fungus interaction. ACS Appl Mater Interfaces 8:34638–34647

    Article  CAS  Google Scholar 

  • Zhu WK, Cong HP, Guan QF, Yao WT, Liang HW, Wang W, Yu SH (2016) Coupling microbial growth with nanoparticles: a universal strategy to produce functional fungal hyphae macrospheres. ACS Appl Mater Interfaces 8:12693–12701

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (51774338), Key Scientific Research Project of Hunan Province, China (2016SK2004), and Programs for Science and Technology Development of Strategic Emerging Industries of Hunan Province, China (2016GK4044) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Liao.

Additional information

Responsible editor: Zhihong Xu

Electronic supplementary material

Fig. S1

(DOCX 4097 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Liang, L., Yang, W. et al. Simultaneous immobilization of cadmium and lead in contaminated soils by hybrid bio-nanocomposites of fungal hyphae and nano-hydroxyapatites. Environ Sci Pollut Res 25, 11970–11980 (2018). https://doi.org/10.1007/s11356-018-1492-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1492-6

Keywords

Navigation