Green synthesis of silver nanoparticles using Piper nigrum: tissue-specific bioaccumulation, histopathology, and oxidative stress responses in Indian major carp Labeo rohita

  • Chellappan Shobana
  • Basuvannan Rangasamy
  • Rama Krishnan Poopal
  • Sivashankar Renuka
  • Mathan Ramesh
Research Article
  • 20 Downloads

Abstract

The aim of the present investigation is to assess the sublethal toxicity of biologically synthesized silver nanoparticles (Ag NPs) in Indian major carp Labeo rohita. Ag NPs used in the study were synthesized by using AgNO3 with aqueous leaf extract of Piper nigrum. Median lethal concentration (LC50) of synthesized Ag NPs was determined for 96 h (25 μg/L); 2.5 μg/L (1/10th LC50) and 5 μg/L (1/5th LC50) were taken as sublethal concentrations to evaluate the toxicity for 35 days. The results of the TEM, SEM, and EDX analyses revealed that Ag NPs were considerably accumulated in the gill, liver, and kidney of fish at both concentrations (2.5 and 5 μg/L). Consequently, the activity of the antioxidant enzymes, SOD and CAT, was significantly (P < 0.05) decreased in the gill, liver, and kidney when compared to the control group during the study period. However, lipid peroxidase (LPO) activity in the gill, liver, and kidney was significantly (P < 0.05) increased, and the result concluded a possible sign of free radical-induced oxidative stress in Ag NP-exposed fish than the sham-exposed individuals. The histopathological study also confirmed the alterations such as degeneration of lamella, lifting of lamellar epithelium, hepatic necrosis, pyknotic nuclei, increased intracellular space, and shrinkage of glomerulus elicited by Ag NPs in the gill, liver, and kidney of Labeo rohita with two different concentrations. The findings of the present study revealed that green synthesis of Ag NPs from Piper nigrum at sublethal concentrations leads to accumulation of Ag, oxidative stress, and histopathological alterations in the target organs of the fish, Labeo rohita.

Keywords

Nanoparticle Ag NPs Accumulation Antioxidants Histopathology Labeo rohita 

Notes

Acknowledgements

The authors would like to thank Dr. N. Ponpandian, Prof. and Head, the Department of Nanoscience and Technology, Bharathiar University, Coimbatore, India, for extending the FESEM instrumental facility and sophisticated analytical instrument facility (DST), and the Department of Anatomy, All India Institute of Medical Sciences, New Delhi, for providing the TEM instrumental facility.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abdel-Khalek A (2015) Risk assessment, bioaccumulation of metals and histopathological alterations in Nile tilapia (Oreochromis niloticus) facing degraded aquatic conditions. Bull Environ Contam Toxicol 94(1):77–83.  https://doi.org/10.1007/s00128-014-1400-9 CrossRefGoogle Scholar
  2. Aebi H (1974) Catalase. In: Bergmeyer HV (ed) Methods in enzymatic analysis. Academic Press, New York, pp 674–684.  https://doi.org/10.1016/B978-0-12-091302-2.50032-3 Google Scholar
  3. Afifi M, Saddick S, Abu Zinada OA (2016) Toxicity of silver nanoparticles on the brain of Oreochromis niloticus and Tilapia zillii. Saudi J Biol Sci 23(6):754–760.  https://doi.org/10.1016/j.sjbs.2016.06.008 CrossRefGoogle Scholar
  4. Al-Bairuty GA, Shaw BJ, Handy RD, Henry TB (2013) Histopathological effects of waterborne copper and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 126:104–115.  https://doi.org/10.1016/j.aquatox.2012.10.005 CrossRefGoogle Scholar
  5. APHA (American Public Health Association) (2005) Standard methods for the examination of water and wastewater, 21st edn. Port City Press, BaltimoreGoogle Scholar
  6. Ates M, Daniels J, Arslan Z, Farah IO (2015) Accumulation and toxicity of CuO and ZnO nanoparticles through waterborne and dietary exposure of gold fish (Carassius auratus). Environ Toxicol 30(1):119–128.  https://doi.org/10.1002/tox.22002 CrossRefGoogle Scholar
  7. Ates M, Demir V, Arslan Z, Kaya H, Yılmaz S, Camas M (2016) Chronic exposure of tilapia (Oreochromis niloticus) to iron oxide nanoparticles, effects of particle morphology on accumulation, elimination, hematology and immune responses. Aquat Toxicol 177:22–32.  https://doi.org/10.1016/j.aquatox.2016.05.005 CrossRefGoogle Scholar
  8. Barmo C, Ciacci C, Canonico B, Fabbri R, Cortese K, Balbi T, Marcomini A, Pojana G, Gallo G, Canesi L (2013) In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis. Aquat Toxicol 132-133:9–18.  https://doi.org/10.1016/j.aquatox.2013.01.014 CrossRefGoogle Scholar
  9. Batley GE, Kirby JK, Mc Laughlin MJ (2013) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46(3):854–862.  https://doi.org/10.1021/ar2003368 CrossRefGoogle Scholar
  10. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139.  https://doi.org/10.1021/es7032718 CrossRefGoogle Scholar
  11. Bilberg K, Hovgaard MB, Besenbacher F, Baatrup E (2012) In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio rerio). J Toxicol 2012:1–9.  https://doi.org/10.1155/2012/293784 CrossRefGoogle Scholar
  12. Bindhu MR, Umadevi M (2015) Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 135:373–378.  https://doi.org/10.1016/j.saa.2014.07.045 CrossRefGoogle Scholar
  13. Calienni MN, Feas DA, Igartúa DE, Chiaramoni NS, del Valle AS, Prieto MJ (2017) Nanotoxicological and teratogenic effects: a linkage between dendrimer surface charge and zebrafish developmental stages. Toxicol Appl Pharmacol 337:1–11.  https://doi.org/10.1016/j.taap.2017.10.003 CrossRefGoogle Scholar
  14. Chae YJ, Pham CH, Lee J, Bae E, Yi J, Gu MB (2009) Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquat Toxicol 94(4):320–327.  https://doi.org/10.1016/j.aquatox.2009.07.019 CrossRefGoogle Scholar
  15. Chang Y, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5(12):2850–2871.  https://doi.org/10.3390/ma5122850 CrossRefGoogle Scholar
  16. Chen Q, Hu X, Wang R, Yuan J, Yin D (2016) Fullerene inhibits benzo (a) pyrene efflux from Cyprinus carpio hepatocytes by affecting cell membrane fluidity and P glycoprotein expression. Aquat Toxicol 174:36–45.  https://doi.org/10.1016/j.aquatox.2016.02.008 CrossRefGoogle Scholar
  17. Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, Yi J, Ryu DY (2010) Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol 100(2):151–159.  https://doi.org/10.1016/j.aquatox.2009.12.012 CrossRefGoogle Scholar
  18. Ciji PP, Bijoy Nandan P (2014) Toxicity of copper and zinc to Puntius parrah (day, 1865). Mar Environ Res 93:38–46.  https://doi.org/10.1016/j.marenvres.2013.11.006 CrossRefGoogle Scholar
  19. Cowart DA, Guida SM, Shah SI, Marsh AG (2011) Effects on Ag nanoparticles on survival and oxygen consumption of zebrafish embryos, Danio rerio. J Environ Sci Health A 46(10):1122–1128.  https://doi.org/10.1080/10934529.2011.590726 CrossRefGoogle Scholar
  20. Dalai S, Iswarya V, Bhuvaneshwari M, Pakrashi S, Chandrasekaran N, Mukherjee A (2014) Different modes of TiO2 uptake by Ceriodaphnia dubia: relevance to toxicity and bioaccumulation. Aquat Toxicol 152:139–146.  https://doi.org/10.1016/j.aquatox.2014.04.002 CrossRefGoogle Scholar
  21. Devasagayam TPA, Tarachand U (1987) Decreased lipid peroxidation in the rat kidney during gestation. Biochem Biophy Res Commun 145(1):134–138.  https://doi.org/10.1016/0006-291X(87)91297-6 CrossRefGoogle Scholar
  22. Devi GP, Ahmed KBA, Varsha MKNS, Shrijhaa BS, Lal KKS, Anbazhagan V, Thiagarajan R (2015) Sulfidation of silver nanoparticle reduces its toxicity in zebrafish. Aquat Toxicol 158:149–156.  https://doi.org/10.1016/j.aquatox.2014.11.007 CrossRefGoogle Scholar
  23. Diniz MS, Alves de Matos AP, Lourenço J, Castro L, Peres I, Mendonça E, Picado A (2013) Liver alterations in two freshwater fish species (Carassius auratus and Danio rerio) following exposure to two different TiO2 nanoparticle concentrations. Microsc Microanal 19(05):1131–1140.  https://doi.org/10.1017/S1431927613013238 CrossRefGoogle Scholar
  24. Dutta HM, Adhikari S, Singh NK, Roy PK, Munshi JS (1993) Histopathological changes induced by malathion in the liver of a freshwater catfish, Heteropneustes fossilis (Bloch). Bull Environ Contam Toxicol 51(6):895–900CrossRefGoogle Scholar
  25. Dziendzikowska K, Gromadzka-Ostrowska J, Lankoff A, Oczkowsk M, Krawczynska A, Chwastowska J, Sadowska-Bratek M, Chajduk E, Wojewódzka M, Dušinská M, Kruszewski M (2011) Time-dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. J Appl Toxicol 32:920–928CrossRefGoogle Scholar
  26. Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37(2):517–531.  https://doi.org/10.1016/j.envint.2010.10.012 CrossRefGoogle Scholar
  27. Farmen E, Mikkelsen HN, Evensen O, Einset J, Heier LS, Rosseland BO, Salbu B, Tollefsen KE, Oughton DH (2012) Acute and sub-lethal effects in juvenile Atlantic salmon exposed to low μg/L concentrations of Ag nanoparticles. Aquat Toxicol 108:78–84.  https://doi.org/10.1016/j.aquatox.2011.07.007 CrossRefGoogle Scholar
  28. Feng M, He Q, Meng L, Zhang X, Sun P, Wang Z (2015) Evaluation of single and joint toxicity of perfluorooctane sulfonate, perfluorooctanoic acid, and copper to Carassius auratus using oxidative stress biomarkers. Aquat Toxicol 161:108–116.  https://doi.org/10.1016/j.aquatox.2015.01.025 CrossRefGoogle Scholar
  29. Finney DJ (1978) Statistical method in biological assay, 3rd edn. Charles Griffin, LondonGoogle Scholar
  30. Gagne F, Auclair J, Turcotte P, Gagnon C (2013) Sublethal effects of silver nanoparticles and dissolved silver in fresh water mussels. J Toxicol Environ Health A 76(8):479–490.  https://doi.org/10.1080/15287394.2013.779561 CrossRefGoogle Scholar
  31. Giao NT, Limpiyakorn T, Kunapongkiti P, Thuptimdang P, Ratpukdi SS (2017) Influence of silver nanoparticles and liberated silver ions on nitrifying sludge: ammonia oxidation inhibitory kinetics and mechanism. Environ Sci Pollut Res 24(10):9229–9240.  https://doi.org/10.1007/s11356-017-8561-0 CrossRefGoogle Scholar
  32. Gingerich WH (1982) Hepatic toxicology of fishes. In: Weber LJ (ed) Aquatic toxicology. Raven Press, New York, pp 55–105Google Scholar
  33. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2008) Modelled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, and fullerenes) for different regions. Environ Sci Technol 43:9216–9222CrossRefGoogle Scholar
  34. Govindasamy R, Rahuman AA (2012) Histopathological studies and oxidative stress of synthesized silver nanoparticles in Mozambique tilapia (Oreochromis mossambicus). J Environ Sci 24(6):1091–1098.  https://doi.org/10.1016/S1001-0742(11)60845-0 CrossRefGoogle Scholar
  35. Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber SD (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41(23):8178–8186.  https://doi.org/10.1021/es071235e CrossRefGoogle Scholar
  36. Halliwell B, Gutteridge JMC (2015) Free radicals in biology and medicine. Oxford University Press, Oxford.  https://doi.org/10.1093/acprof:oso/9780198717478.001.0001 CrossRefGoogle Scholar
  37. Hao L, Wang Z, Xing B (2009) Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in juvenile carp (Cyprinus carpio). J Environ Sci 21(10):1459–1466.  https://doi.org/10.1016/S1001-0742(08)62440-7 CrossRefGoogle Scholar
  38. Hao L, Chen L, Hao J, Zhong N (2013) Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio), a comparative study with its bulk counterparts. Ecotoxicol Environ Saf 91:52–60.  https://doi.org/10.1016/j.ecoenv.2013.01.007 CrossRefGoogle Scholar
  39. Hedayathi A, Kolangi H, Jahanbakhshi A, Shalu EIF (2012) Evaluation of silver nanoparticles. Ecotoxicity in silver carp (Hypophthalmicthys molitrix) and goldfish (Carassius auratus). Bulgarian J Vet Med 15:172–177Google Scholar
  40. Hinton DE, Baumann PC, Gardner GC, Hawkins WE, Hendricks JD, Murchelano RA, Okihiro MS (1992) Histopathological biomarkers. Biomarkers: biochemical, physiological and histological markers of anthropogenic stress. Lewis Publishers, Chelsea, pp 155–210Google Scholar
  41. Hogstrand C, Wood C (1998) Toward a better understanding of the bioavailability, physiology, and toxicity of silver in fish: implications of water quality criteria. Environ Toxicol Chem 17(4):547–561.  https://doi.org/10.1002/etc.5620170405 CrossRefGoogle Scholar
  42. Hoseini SM, Hedayati A, Mirghaed AT, Ghelichpour M (2016) Toxic effects of copper sulfate and copper nanoparticles on mineral, enzymes, thyroid hormones and protein fractions of plasma and histopathology in common carp Cyprinus carpio. Exp Toxicol Pathol 68(9):493–503.  https://doi.org/10.1016/j.etp.2016.08.002 CrossRefGoogle Scholar
  43. Humason GL (1979) Animal tissue techniques, 4th edn. WH Freeman & CO, San FranciscoGoogle Scholar
  44. Iavicoli I, Leso V, Schulte PA (2016) Biomarkers of susceptibility: state of the art and implications for occupational exposure to engineered nanomaterials. Toxicol Appl Pharmacol 299:112–124.  https://doi.org/10.1016/j.taap.2015.12.018 CrossRefGoogle Scholar
  45. Isani G, Falcioni ML, Barucca G, Sekar D, Andreani G, Carpene E, Falcioni G (2013) Comparative toxicity of CuO nanoparticles and CuSO4 in rainbow trout. Ecotoxicol Environ Saf 97:40–46.  https://doi.org/10.1016/j.ecoenv.2013.07.001 CrossRefGoogle Scholar
  46. Jang MH, Kim WK, Lee SK, Henry TB, Park JW (2014) Uptake, tissue distribution, and depuration of total silver in common carp (Cyprinus carpio) after aqueous exposure to silver nanoparticles. Environ Sci Technol 48(19):11568–11574.  https://doi.org/10.1021/es5022813 CrossRefGoogle Scholar
  47. Jonsson CM, Arana S, Ferracini VL, Queiroz SCN, Clemente Z, Vallim JH, de Holanda Nunes Maia A, Accaui Marcondes de Moura M (2017) Herbicide mixtures from usual practice in sugarcane crop: evaluation of oxidative stress and histopathological effects in the tropical fish Oreochromis niloticus. Water Air Soil Pollut 228(9):332.  https://doi.org/10.1007/s11270-017-3506-2 CrossRefGoogle Scholar
  48. Joo HS, Kalbassi MR, Yu IJ, Lee JH, Johar SA (2013) Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss), influence of concentration and salinity. Aquat Toxicol 140-141:398–406CrossRefGoogle Scholar
  49. Kathiravan V, Ravi S, Ashokkumar S (2014) Synthesis of silver nanoparticles from Melia dubia leaf extract and there in vitro anticancer activity. Spectrochim Acta A Mol Biomol Spectrosc 130:116–121.  https://doi.org/10.1016/j.saa.2014.03.107 CrossRefGoogle Scholar
  50. Kaya H, Akbulut M (2015) Effects of waterborne lead exposure in Mozambique tilapia, oxidative stress, osmoregulatory responses, and tissue accumulation. J Aquat Anim Health 27(2):77–87.  https://doi.org/10.1080/08997659.2014.1001533 CrossRefGoogle Scholar
  51. Krishnaraj C, Stacey L, Harper B, Soon Y (2016) In vivo toxicological assessment of biologically synthesized silver nanoparticles in adult zebrafish (Danio rerio). J Hazard Mater 301:480–491.  https://doi.org/10.1016/j.jhazmat.2015.09.022 CrossRefGoogle Scholar
  52. Kwok KWH, Auffan M, Badireddy AR, Nelson CM, Wiesner MR, Chilkoti A, Liu J, Marinakos SM, Hinton DE (2012) Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): effect of coating materials. Aquat Toxicol 120-121:59–66.  https://doi.org/10.1016/j.aquatox.2012.04.012 CrossRefGoogle Scholar
  53. Lee B, Duong C, Cho J, Lee J, Kim K, Seo Y, Kim P, Choi K, Yoon J (2012) Toxicity of citrate-capped silver nanoparticles in common carp (Cyprinus carpio). J Biomed Biotechnol 2012:262670Google Scholar
  54. Lewis SV (1979) The scanning electron microscope study of the gills of the air-breathing catfish, Clarias batrachus. J Fish Biol 15(4):381–384.  https://doi.org/10.1111/j.1095-8649.1979.tb03620.x CrossRefGoogle Scholar
  55. Li XB, Hou XL, Mao Q, Zhao YL, Cheng YX, Wang Q (2009) Toxic effects of copper on antioxidative and metabolic enzymes of the marine gastropod Onchidium struma. Arch Environ Contam Toxicol 56(4):776–784.  https://doi.org/10.1007/s00244-009-9290-2 CrossRefGoogle Scholar
  56. Lima AR, Curtis C, Hammermeister DE, Call DJ, Felhaber TA (1982) Acute toxicity of silver to selected fish and invertebrates. Bull Environ Contam Toxicol 29(2):184–189.  https://doi.org/10.1007/BF01606148 CrossRefGoogle Scholar
  57. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275Google Scholar
  58. Lushchak VI (2011) Adaptive response to oxidative stress: bacteria, fungi, plants and animals. Comp Biochem Physiol C Toxicol Pharmacol 153(2):175–190.  https://doi.org/10.1016/j.cbpc.2010.10.004 CrossRefGoogle Scholar
  59. Marklund S, Marklund G (1974) Involvement of superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474.  https://doi.org/10.1111/j.1432-1033.1974.tb03714.x CrossRefGoogle Scholar
  60. Masouleh FF, Amiri BM, Mirvaghefi A, Ghafoori H, Madsen SS (2017) Silver nanoparticles cause osmoregulatory impairment and oxidative stress in Caspian kutum (Rutilus kutum, Kamensky 1901). Environ Monit Assess 189(9):448.  https://doi.org/10.1007/s10661-017-6156-3 CrossRefGoogle Scholar
  61. Mohan Kumar K, Sinha M, Mandal BK, Ghosh AR, Siva Kumar K, Reddy PS (2012) Green synthesis of silver nanoparticles using Terminalia chebula extract at room temperature and their antimicrobial studies. Spectrochim Acta A Mol Biomol Spectrosc 91:228–233.  https://doi.org/10.1016/j.saa.2012.02.001 CrossRefGoogle Scholar
  62. Mohapatra B, Kuriakose S, Mohapatra S (2015) Rapid green synthesis of silver nanoparticles and nanorods using Piper nigrum extract. J Alloys Compd 637:119–126.  https://doi.org/10.1016/j.jallcom.2015.02.206 CrossRefGoogle Scholar
  63. Mueller NC, Nowack B (2008) Exposure modelling of engineered nanoparticles in the environment. J Environ Sci Technol 42(12):4447–4453.  https://doi.org/10.1021/es7029637 CrossRefGoogle Scholar
  64. Nasrollahzadeh M, Sajadi SM, Babaei F, Maham M (2015) Euphorbia helioscopia Linn as a green source for the synthesis of silver nanoparticles and their optical and catalytic properties. J Colloid Int Sci 450:374–380.  https://doi.org/10.1016/j.jcis.2015.03.033 CrossRefGoogle Scholar
  65. Ostaszewska T, Śliwiński J, Kamaszewski M, Sysa P, Chojnacki M (2017) Cytotoxicity of silver and copper nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Environ Sci Pollut Res 25(1):908–915.  https://doi.org/10.1007/s11356-017-0494-0 CrossRefGoogle Scholar
  66. Park SJ, Lee SW, Lee KJ, Lee JH, Kim KD, Jeong JH, Choi JH (2010) An antireflective nanostructure array fabricated by nanosilver colloidal lithography on a silicon substrate. Nanoscale Res Lett 5(10):1570–1577.  https://doi.org/10.1007/s11671-010-9678-y CrossRefGoogle Scholar
  67. Pearse AGE (1968) Histochemistry. Theoretical and applied, 2nd edn. Little Brown and Company, BostonGoogle Scholar
  68. Philip D, Unni C, Aromal S, Vidhu VK (2011) Murraya koenigii leaf-assisted rapid green synthesis of gold and silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 78(2):899–904.  https://doi.org/10.1016/j.saa.2010.12.060 CrossRefGoogle Scholar
  69. Poopal RK, Ramesh M, Maruthappan V, Babu Rajendran R (2017) Potential effects of low molecular weight phthalate esters (C16H22O4 and C12H14O4) on the freshwater fish Cyprinus carpio. Toxicol Res 6(4):505–520.  https://doi.org/10.1039/C7TX00084G CrossRefGoogle Scholar
  70. Praveen Kumar K, Paul W, Sharma CP (2012) Green synthesis of silver nanoparticles with Zingiber officinale extract and study of its blood compatibility. Bio Nano Sci 2:144–152Google Scholar
  71. Regoli F, Hummel H, Amiard-Triquet C, Larroux C, Sukhotin A (1998) Trace metals and variations of antioxidant enzymes in Arctic bivalve populations. Arch Environ Contam Toxicol 35(4):594–601.  https://doi.org/10.1007/s002449900421 CrossRefGoogle Scholar
  72. Roberts RJ (1978) The anatomy and physiology of teleosts. In: Roberts RJ (ed) Fish pathology. Bailliere Tindall, London, pp 13–103Google Scholar
  73. Ruas CB, Carvalho Cdos S, de Araujo HS, Espindola EL, Fernandes MN (2008) Oxidative stress biomarkers of exposure in the blood of cichlid species from a metal contaminated river. Ecotoxicol Environ Saf 71(1):86–93.  https://doi.org/10.1016/j.ecoenv.2007.08.018 CrossRefGoogle Scholar
  74. Saratale RG, Saratale GD, Shin HS, Jacob JM, Pugazhendhi A, Bhaisare M, Kumar G (2017) New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-017-9912-6
  75. Scown TM, Santos EM, Johnston BD, Gaiser B, Baalousha M, Mitov S, Lead JR, Stone V, Fernandes TF, Jepson M, van Aerle R, Tyler CR (2010) Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci 115(2):521–534.  https://doi.org/10.1093/toxsci/kfq076 CrossRefGoogle Scholar
  76. Shanmugavani A, Selvan RK (2016) Microwave-assisted reflux synthesis of NiCo2O4/NiO composite: fabrication of high-performance asymmetric supercapacitor with Fe2O3. Electrochim Acta 189:283–294.  https://doi.org/10.1016/j.electacta.2015.12.043 CrossRefGoogle Scholar
  77. Shaw BJ, Handy RD (2011) Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environ Int 37(6):1083–1097.  https://doi.org/10.1016/j.envint.2011.03.009 CrossRefGoogle Scholar
  78. Song L, Vijver MG, Peijnenburg WJ, Galloway TS, Tyler CR (2015) A comparative analysis on the in vivo toxicity of copper nanoparticles in three species of freshwater fish. Chemosphere 139:181–189.  https://doi.org/10.1016/j.chemosphere.2015.06.021 CrossRefGoogle Scholar
  79. Taju G, Abdul Majeed S, Nambi KSN, Sahul Hameed AS (2014) In vitro assay for the toxicity of silver nanoparticles using heart and gill cell lines of Catla catla and gill cell line of Labeo rohita. Comp Biochem Physiol C Toxicol Pharmacol 161:41–52.  https://doi.org/10.1016/j.cbpc.2014.01.007 CrossRefGoogle Scholar
  80. Torres MA, Testa CP, Gaspari C, Masutti MB, Panitz CMN, Curi-Pedrosa R, de Almeida EA, Di Mascio P, Filho DW (2002) Oxidative stress in the mussel Mytella guyanensis from polluted mangroves on Santa Catarina Island, Brazil. Mar Pollut Bull 44(9):923–932.  https://doi.org/10.1016/S0025-326X(02)00142-X CrossRefGoogle Scholar
  81. UshaRani P, Rajasekharreddy P (2011) Green synthesis of silver-protein (core-shell) nanoparticles using Piper betle L. leaf extract and its ecotoxicological studies on Daphnia magna. Colloids Surf A Physicochem Eng Asp 389(1-3):188–194.  https://doi.org/10.1016/j.colsurfa.2011.08.028 CrossRefGoogle Scholar
  82. Vijayarahavan K, Kamala Nalini SP, Udaya Prakash N, Madhankumar D (2012) One step green synthesis of silver nano/microparticles using extracts of Trachyspermum ammi and Papaver somniferum. Colloids Surf B Biointerfaces 94:114–117.  https://doi.org/10.1016/j.colsurfb.2012.01.026 CrossRefGoogle Scholar
  83. Vutukuru SS, Chintada S, Madhavi KR, Rao JV, Anjaneyulu Y (2006) Acute effects of copper on superoxide dismutase, catalase and lipid peroxidation in the freshwater teleost fish, Esomus danricus. Fish Physiol Biochem 32(3):221–229.  https://doi.org/10.1007/s10695-006-9004-x CrossRefGoogle Scholar
  84. Wang Z, Xia T, Liu S (2015) Mechanisms of nanosilver-induced toxicological effects, more attention should be paid to its sublethal effects. Nanoscale 7:7470–7481CrossRefGoogle Scholar
  85. Wood CM (2011) Silver. In: Wood CM, Farrell AP, Brauner CJ (eds) Homeostasis and toxicology of non-essential metals, fish physiology, vol 31 B. Academic Press/Elsevier, New York, pp 1–65Google Scholar
  86. Wu Y, Zhou Q (2013) Silver nanoparticles cause oxidative damage and histological changes in medaka (Oryzias latipes) after 14 days of exposure. Environ Toxicol Chem 32(1):165–173.  https://doi.org/10.1002/etc.2038 CrossRefGoogle Scholar
  87. Wu Y, Zhou Q, Li H, Liu W, Wang T, Jiang G (2010) Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquat Toxicol 100(2):160–167.  https://doi.org/10.1016/j.aquatox.2009.11.014 CrossRefGoogle Scholar
  88. Xu L, Xua QH, Zhoua XY, Yinc LY, Guand PP, Zhanga T, Liu JX (2017) Mechanisms of silver-nanoparticles induced hypopigmentation in embryonic zebrafish. Aquat Toxicol 184:49–60.  https://doi.org/10.1016/j.aquatox.2017.01.002 CrossRefGoogle Scholar
  89. Zhao J, Wang ZY, Liu XY, Xie XY, Zhang K, Xing BS (2011) Distribution of CuO nanoparticles in juvenile carp (Cyprinus carpio) and their potential toxicity. J Hazard Mater 197:304–310.  https://doi.org/10.1016/j.jhazmat.2011.09.094 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chellappan Shobana
    • 1
  • Basuvannan Rangasamy
    • 1
  • Rama Krishnan Poopal
    • 1
    • 2
  • Sivashankar Renuka
    • 1
  • Mathan Ramesh
    • 1
  1. 1.Unit of Toxicology, Department of Zoology, School of Life SciencesBharathiar UniversityCoimbatoreIndia
  2. 2.Environmental Toxicology and Toxicogenomics Laboratory, Department of Environmental BiotechnologyBharathidasan UniversityTiruchirappalliIndia

Personalised recommendations