Advertisement

Removal of organochlorine pesticides from lindane production wastes by electrochemical oxidation

Advanced oxidation processes for water/wastewater treatment

Abstract

This study is focused on the effective removal of recalcitrant pollutants hexaclorocyclohexanes (HCHs, isomers α, β, γ, and δ) and chlorobenzenes (CBs) present in a real groundwater coming from a landfill of an old lindane factory. Groundwater is characterized by a total organic carbon (TOC) content of 9 mg L−1, pH0 = 7, conductivity = 3.7 mS cm−1, high salt concentration (SO42−, HCO3, Cl), and ferrous iron in solution. The experiments were performed using a BDD anode and a carbon felt (CF) cathode at the natural groundwater pH and without addition of supporting electrolyte. The complete depletion of the four HCH isomers and a mineralization degree of 90% were reached at 4-h electrolysis with a current intensity of 400 mA, the residual TOC (0.8 mg L−1) corresponding mainly to formic acid. A parallel series reaction pathway was proposed: HCHs and CBs are transformed into chlorinated and hydroxylated intermediates that are rapidly oxidized to non-toxic carboxylic acids and/or mineralized, leading to a rapid decrease in solution pH.

Keywords

Organochlorine pesticides Hexachlorocyclohexanes Lindane BDD Carbon felt Hydroxyl radical Electrochemical oxidation 

Notes

Acknowledgments

The authors acknowledge Université Paris-Est Marne-la-Vallée (France) for research facilities. Carmen M. Dominguez acknowledges the Spanish MINECO for “Juan de la Cierva” post-doctoral grant (FJCI-2014-20732) and the “José Castillejo” mobility program (CAS16/00255).

Funding information

The authors acknowledge financial support from Comunidad Autonoma of Madrid (Project S2013-MAE-2739 CARESOIL-CM) and from the Spanish MINECO (Project CTM2013-43794-R and CTM2016-77151-C2-1-R).

References

  1. Bocos E, Oturan N, Sanromán MÁ, Oturan MA (2016) Elimination of radiocontrast agent diatrizoic acid from water by electrochemical advanced oxidation: kinetics study, mechanism and mineralization pathway. J Electroanal Chem 772:1–8.  https://doi.org/10.1016/j.jelechem.2016.04.011 CrossRefGoogle Scholar
  2. Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal B-Environ 166:603–643CrossRefGoogle Scholar
  3. Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109(12):6570–6631.  https://doi.org/10.1021/cr900136g CrossRefGoogle Scholar
  4. Buser HR, Muller MD (1995) Isomer and enantioselective degradation of hexachlorocyclohexane isomers in sewage-sludge under anaerobic conditions. Environ Sci Technol 29(3):664–672.  https://doi.org/10.1021/es00003a013 CrossRefGoogle Scholar
  5. Canizares P, Hernández-Ortega M, Rodrigo M, Barrera-Díaz C, Roa-Morales G, Sáez C (2009) A comparison between conductive-diamond electrochemical oxidation and other advanced oxidation processes for the treatment of synthetic melanoidins. J Hazard Mater 164(1):120–125.  https://doi.org/10.1016/j.jhazmat.2008.07.134 CrossRefGoogle Scholar
  6. Canizares P, Martínez L, Paz R, Saez C, Lobato J, Rodrigo MA (2006) Treatment of Fenton-refractory olive oil mill wastes by electrochemical oxidation with boron-doped diamond anodes. J Chem Technol Biot 81(8):1331–1337.  https://doi.org/10.1002/jctb.1428 CrossRefGoogle Scholar
  7. Chang C, Lian F, Zhu L (2011) Simultaneous adsorption and degradation of gamma-HCH by nZVI/Cu bimetallic nanoparticles with activated carbon support. Environ Pollut 159(10):2507–2514.  https://doi.org/10.1016/j.envpol.2011.06.021 CrossRefGoogle Scholar
  8. Criquet J, Leitner NKV (2009) Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis. Chemosphere 77(2):194–200.  https://doi.org/10.1016/j.chemosphere.2009.07.040 CrossRefGoogle Scholar
  9. Dirany A, Efremova-Aaron S, Oturan N, Sirés I, Oturan MA, Aaron JJ (2011) Study of the toxicity of sulfamethoxazole and its degradation products in water by a bioluminescence method during application of the electro-Fenton treatment. Anal Bioanal Chem 400(2):353–360.  https://doi.org/10.1007/s00216-010-4441-x CrossRefGoogle Scholar
  10. Dominguez CM, Parchão J, Rodriguez S, Lorenzo D, Romero A, Santos A (2016) Kinetics of lindane dechlorination by zero valent iron microparticles: effect of different salts and stability study. Ind Eng Chem Res 55(50):12776–12785.  https://doi.org/10.1021/acs.iecr.6b03434 CrossRefGoogle Scholar
  11. Elliott DW, Lien H, Zhang W (2008) Zerovalent iron nanoparticles for treatment of ground water contaminated by hexachlorocyclohexanes. J Environ Qual 37(6):2192–2201.  https://doi.org/10.2134/jeq2007.0545 CrossRefGoogle Scholar
  12. Fernández J, Arjol M, Cacho C (2013) POP-contaminated sites from HCH production in Sabiñánigo, Spain. Environ Sci Pollut Res 20(4):1937–1950.  https://doi.org/10.1007/s11356-012-1433-8 CrossRefGoogle Scholar
  13. Kesraoui-Abdessalem A, Bellakhal N, Oturan N, Dachraoui M, Oturan MA (2010) Treatment of a mixture of three pesticides by photo-and electro-Fenton processes. Desalination 250(1):450–455.  https://doi.org/10.1016/j.desal.2009.09.072 CrossRefGoogle Scholar
  14. Khan S, Han C, Khan HM, Boccelli DL, Dionysiou DD (2017) Efficient degradation of lindane by visible and simulated solar light-assisted S-TiO2/peroxymonosulfate process: kinetics and mechanistic investigations. J Mol Catal A-Chem 428:9–6.  https://doi.org/10.1016/j.molcata.2016.11.035 CrossRefGoogle Scholar
  15. Komtchou S, Dirany A, Drogui P, Bermond A (2015) Removal of carbamazepine from spiked municipal wastewater using electro-Fenton process. Environ Sci Pollut Res 22(15):11513–11525.  https://doi.org/10.1007/s11356-015-4345-6 CrossRefGoogle Scholar
  16. Labiadh L, Oturan MA, Panizza M, Hamadi NB, Ammar S (2015) Complete removal of AHPS synthetic dye from water using new electro-Fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst. J Hazard Mater 297:34–41.  https://doi.org/10.1016/j.jhazmat.2015.04.062 CrossRefGoogle Scholar
  17. Madaj R, Sobiecka E, Kalinowska H (2017) Lindane, kepone and pentachlorobenzene: chloropesticides banned by Stockholm convention. Int J Environ Sci Technol:1–10.  https://doi.org/10.1007/s13762-017-1417-9),  https://doi.org/10.1007/s13762-017-1417-9)
  18. Martínez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B-Environ 87(3-4):105–145.  https://doi.org/10.1016/j.apcatb.2008.09.017 CrossRefGoogle Scholar
  19. Martinez-Huitle CA, Rodrigo MA, Sires I, Scialdone O (2015) Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev 115(24):13362–13407.  https://doi.org/10.1021/acs.chemrev.5b00361 CrossRefGoogle Scholar
  20. Mascia M, Vacca A, Polcaro AM, Palmas S, Ruiz JR, Da Pozzo A (2010) Electrochemical treatment of phenolic waters in presence of chloride with boron-doped diamond (BDD) anodes: experimental study and mathematical model. J Hazard Mater 174(1-3):314–322.  https://doi.org/10.1016/j.jhazmat.2009.09.053 CrossRefGoogle Scholar
  21. Nidheesh PV (2015) Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. RSC Adv 5(51):40552–40577.  https://doi.org/10.1039/C5RA02023A CrossRefGoogle Scholar
  22. Nidheesh PV, Gandhimathi R (2012) Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination 299:1–15.  https://doi.org/10.1016/j.desal.2012.05.011 CrossRefGoogle Scholar
  23. Oturan MA (2000) An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants. Application to herbicide 2,4-D. J Appl Electrochem 30:477–482CrossRefGoogle Scholar
  24. Oturan MA, Aaron JJ (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit Rev Environ Sci Technol 44(23):2577–2641.  https://doi.org/10.1080/10643389.2013.829765 CrossRefGoogle Scholar
  25. Oturan MA, Brillas E (2007) Electrochemical advanced oxidation processes (EAOPs) for environmental applications. Port Electrochim Acta 25(1):1–18.  https://doi.org/10.4152/pea.200701001 CrossRefGoogle Scholar
  26. Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109(12):6541–6569.  https://doi.org/10.1021/cr9001319 CrossRefGoogle Scholar
  27. Peng L, Deng D, Guan M, Fang X, Zhu Q (2015) Remediation HCHs POPs-contaminated soil by activated persulfate technologies: feasibility, impact of activation methods and mechanistic implications. Sep Purif Technol 150:215–222.  https://doi.org/10.1016/j.seppur.2015.07.002 CrossRefGoogle Scholar
  28. Randazzo S, Scialdone O, Brillas E, Sirés I (2011) Comparative electrochemical treatments of two chlorinated aliphatic hydrocarbons. Time course of the main reaction by-products. J Hazard Mater 192(3):1555–1564.  https://doi.org/10.1016/j.jhazmat.2011.06.075 CrossRefGoogle Scholar
  29. Rodrigo MA, Oturan N, Oturan MA (2014) Electrochemically assisted remediation of pesticides in soils and water: a review. Chem Rev 114(17):8720–8745.  https://doi.org/10.1021/cr500077e CrossRefGoogle Scholar
  30. Sandell EB (1959) Colorimetric determination of traces of metals. Interscience Publishers Inc., New York, Vol. 59, No. 6, p. 481Google Scholar
  31. Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21(14):8336–8367.  https://doi.org/10.1007/s11356-014-2783-1 CrossRefGoogle Scholar
  32. Sirés I, Garrido JA, Rodriguez RM, Brillas E, Oturan N, Oturan MA (2007) Catalytic behavior of the Fe+3/Fe+2 system in the electro-Fenton degradation of the antimicrobial chlorophene. Appl Catal B-Environ 72(3-4):382–394.  https://doi.org/10.1016/j.apcatb.2006.11.016 CrossRefGoogle Scholar
  33. Vasudevan S, Oturan MA (2014) Electrochemistry as cause and cure in water pollution. An overview. Environ Chem Lett 12(1):97–108.  https://doi.org/10.1007/s10311-013-0434-2 CrossRefGoogle Scholar
  34. Vega M, Romano D, Uotila E. (2016) Lindane (persistent organic pollutant) in the EU. Directorate General for Internal Policies. Policy Department C: Citizens’ Rights and Constitutional Affairs. Petitions (PETI). PE 571.398Google Scholar
  35. Vijgen J (2006) The legacy of lindane HCH isomer production. Main report. International HCH & Pesticides Association, Holte, JanuaryGoogle Scholar
  36. Vijgen J, Abhilash P, Li YF, Lal R, Forter M, Torres J, Singh N, Yunus M, Tian C, Schäffer A (2011) Hexachlorocyclohexane (HCH) as new Stockholm convention POPs—a global perspective on the management of Lindane and its waste isomers. Environ Sci Pollut Res 18(2):152–162.  https://doi.org/10.1007/s11356-010-0417-9 CrossRefGoogle Scholar
  37. Wacławek S, Antoš V, Hrabák P, Černík M, Elliott D (2016) Remediation of hexachlorocyclohexanes by electrochemically activated persulfates. Environ Sci Pollut Res 23(1):765–773.  https://doi.org/10.1007/s11356-015-5312-y CrossRefGoogle Scholar
  38. Wang Z, Peng P, Huang W (2009) Dechlorination of gamma-hexachlorocyclohexane by zero-valent metallic iron. J Hazard Mater 166(2-3):992–997.  https://doi.org/10.1016/j.jhazmat.2008.11.106 CrossRefGoogle Scholar
  39. Yahya MS, Oturan N, El Kacemi K, El Karbane M, Aravindakumar CT, Oturan MA (2014) Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-Fenton process: kinetics and oxidation products. Chemosphere 117:447–454.  https://doi.org/10.1016/j.chemosphere.2014.08.016 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento Ingeniería Química, Facultad de Ciencias QuímicasUniversidad Complutense MadridMadridSpain
  2. 2.Laboratoire Géomatériaux et EnvironnementUniversité Paris-EstMarne-la-Vallée Cedex 2France

Personalised recommendations