Removal of MCs by Bi2O2CO3: adsorption and the potential of photocatalytic degradation

  • Yujiao Wang
  • Yanqiu Cao
  • Hongmei Li
  • Aijun Gong
  • Jintao Han
  • Zhen Qian
  • Wenran Chao
Research Article
  • 57 Downloads

Abstract

Microcystins (MCs) is a kind of hepatotoxin, which is the secondary metabolite of cyanobacteria. Bi2O2CO3 (BOC) is a kind of cheap and nontoxic semiconductor material. BOC was synthetized by solvothermal method and then microcystin-LR (MC-LR) and microcystin-RR (MC-RR) were removed by BOC, through adsorption and photocatalytic degradation. When the dosage of BOC is 6 g/L, the MC-LR and MC-RR in the natural water sample can be completely adsorbed in 30 min and then after 12 h irradiation, MC-LR and MC-RR were photocatalytically degraded by BOC.

Keywords

Microcystins Bi2O2CO3 Adsorption Photocatalytic degradation 

Notes

Acknowledgements

Thanks to the technical support of the National Institute of Metrology, China.

References

  1. Cao YQ, Wei N, Gong AJ, Qiu LN (2014) Large-scale extraction and purification of microcystin-LR by macroporous resins. Asian J Chem 26(14):4206–4210.  https://doi.org/10.14233/ajchem.2014.16069 Google Scholar
  2. Chen P, Zhu L, Fang S, Wang C, Shan G (2012) Photocatalytic degradation efficiency and mechanism of microcystin-RR by mesoporous Bi(2)WO(6) under near ultraviolet light. Environ Sci Technol 46(4):2345–2351.  https://doi.org/10.1021/es2036338 CrossRefGoogle Scholar
  3. Garibo D, Flores C, Ceto X, Prieto-Simon B, Del Valle M, Caixach J, Diogene J, Campas M (2014) Inhibition equivalency factors for microcystin variants in recombinant and wild-type protein phosphatase 1 and 2A assays. Environ Sci Pollut Res Int 21(18):10652–10660.  https://doi.org/10.1007/s11356-014-3065-7 CrossRefGoogle Scholar
  4. Han C, Machala L, Medrik I, Prucek R, Kralchevska RP, Dionysiou DD (2017) Degradation of the cyanotoxin microcystin-LR using iron-based photocatalysts under visible light illumination. Environ Sci Pollut Res Int 24(23):19435–19443.  https://doi.org/10.1007/s11356-017-9566-4 CrossRefGoogle Scholar
  5. Huang Y, Fan W, Long B, Li H, Zhao F, Liu Z, Tong Y, Ji H (2016) Visible light Bi2S3/Bi2O3/Bi2O2CO3 photocatalyst for effective degradation of organic pollutions. Appl Catal B Environ 185:68–76.  https://doi.org/10.1016/j.apcatb.2015.11.043 CrossRefGoogle Scholar
  6. Kubinakova E, Hives J, Gal M, Faskova A (2017) Effect of ferrate on green algae removal. Environ Sci Pollut Res Int 24(27):21894–21901.  https://doi.org/10.1007/s11356-017-9846-z CrossRefGoogle Scholar
  7. Liu J, Ye JS, Ou HS, Lin J (2017) Effectiveness and intermediates of microcystin-LR degradation by UV/H2O2 via 265 nm ultraviolet light-emitting diodes. Environ Sci Pollut Res Int 24(5):4676–4684.  https://doi.org/10.1007/s11356-016-8148-1 CrossRefGoogle Scholar
  8. Ma G, Pei H, Hu W, Xu X, Ma C, Pei R (2016) Effects of glucose on microcystin-LR removal and the bacterial community composition through anoxic biodegradation in drinking water sludge. Environ Technol 37(1):64–73.  https://doi.org/10.1080/09593330.2015.1063705 CrossRefGoogle Scholar
  9. Mohamed ZA, Deyab MA, Abou-Dobara MI, El-Sayed AK, El-Raghi WM (2015) Occurrence of cyanobacteria and microcystin toxins in raw and treated waters of the Nile River, Egypt: implication for water treatment and human health. Environ Sci Pollut Res Int 22(15):11716–11727.  https://doi.org/10.1007/s11356-015-4420-z CrossRefGoogle Scholar
  10. Ni Z, Sun Y, Zhang Y, Dong F (2016) Fabrication, modification and application of (BiO)2CO3-based photocatalysts: a review. Applied Surface Science 365:314-335.  https://doi.org/10.1016/j.apsusc.2015.12.231 CrossRefGoogle Scholar
  11. Park J-A, Yang B, Park C, Choi J-W, van Genuchten CM, Lee S-H (2017) Oxidation of microcystin-LR by the Fenton process: kinetics, degradation intermediates, water quality and toxicity assessment. Chem Eng J 309:339–348.  https://doi.org/10.1016/j.cej.2016.10.083 CrossRefGoogle Scholar
  12. Ufelmann H, Kruger T, Luckas B, Schrenk D (2012) Human and rat hepatocyte toxicity and protein phosphatase 1 and 2A inhibitory activity of naturally occurring desmethyl-microcystins and nodularins. Toxicology 293(1-3):59–67.  https://doi.org/10.1016/j.tox.2011.12.011 CrossRefGoogle Scholar
  13. Vareli K, Jaeger W, Touka A, Frillingos S, Briasoulis E, Sainis I (2013) Hepatotoxic seafood poisoning (HSP) due to microcystins: a threat from the ocean? Mar Drugs 11(12):2751–2768.  https://doi.org/10.3390/md11082751 CrossRefGoogle Scholar
  14. Wang L, Ma W, Fang Y, Zhang Y, Jia M, Li R, Huang Y (2013) Bi4Ti3O12 synthesized by high temperature solid phase method and it’s visible catalytic activity. Procedia Environ Sci 18:547–558.  https://doi.org/10.1016/j.proenv.2013.04.074 CrossRefGoogle Scholar
  15. Xiao J, Xie Y, Cao H, Wang Y, Zhao Z (2015) g-C3N4-triggered super synergy between photocatalysis and ozonation attributed to promoted OH generation. Catal Commun 66:10–14.  https://doi.org/10.1016/j.catcom.2015.03.004 CrossRefGoogle Scholar
  16. Xiao J, Xie Y, Han Q, Cao H, Wang Y, Nawaz F, Duan F (2016) Superoxide radical-mediated photocatalytic oxidation of phenolic compounds over Ag(+)/TiO(2): influence of electron donating and withdrawing substituents. J Hazard Mater 304:126–133.  https://doi.org/10.1016/j.jhazmat.2015.10.052 CrossRefGoogle Scholar
  17. Yu G, Jiang Y, Song G, Tan W, Zhu M, Li R (2014) Variation of Microcystis and microcystins coupling nitrogen and phosphorus nutrients in Lake Erhai, a drinking-water source in Southwest Plateau, China. Environ Sci Pollut Res Int 21(16):9887–9898.  https://doi.org/10.1007/s11356-014-2937-1 CrossRefGoogle Scholar
  18. Yu L, Zhang X, Li G, Cao Y, Shao Y, Li D (2016) Highly efficient Bi2O2CO3/BiOCl photocatalyst based on heterojunction with enhanced dye-sensitization under visible light. Appl Catal B Environ 187:301–309.  https://doi.org/10.1016/j.apcatb.2016.01.045 CrossRefGoogle Scholar
  19. Zhu S, Yin D, Gao N, Zhou S, Wang Z, Zhang Z (2016) Adsorption of two microcystins onto activated carbon: equilibrium, kinetic, and influential factors. Desalin Water Treat 57(50):23666–23674.  https://doi.org/10.1080/19443994.2015.1137492 CrossRefGoogle Scholar
  20. Zuo X, Cao Y, Gong A, Ding S, Zhang T, Wang Y (2016) Removal of microcystins by highly efficient photo-catalyst Bi2WO6-activated carbon under simulated light. Water Air Soil Pollut 227(4).  https://doi.org/10.1007/s11270-016-2798-y

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yujiao Wang
    • 1
  • Yanqiu Cao
    • 1
  • Hongmei Li
    • 2
  • Aijun Gong
    • 1
  • Jintao Han
    • 1
  • Zhen Qian
    • 1
  • Wenran Chao
    • 1
  1. 1.School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingPeople’s Republic of China
  2. 2.Division of Metrology in ChemistryNational Institute of MetrologyBeijingPeople’s Republic of China

Personalised recommendations