Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 12, pp 11833–11840 | Cite as

Evaluation of vulnerable PM2.5-exposure individuals: a repeated-measure study in an elderly population

  • Haiyan Chu
  • Junyi Xin
  • Qi Yuan
  • Xu Zhang
  • Wang Pan
  • Xinying Zeng
  • Yaoyao Chen
  • Gaoxiang Ma
  • Yuqiu Ge
  • Mulong Du
  • Na Tong
  • Xiaobo Li
  • Zhengdong Zhang
  • Meilin Wang
Research Article
  • 129 Downloads

Abstract

Numerous studies have shown that elderly people are susceptible to high-level particles with aerodynamic diameter ≤ 2.5 μm (PM2.5) exposure. However, not all elderly people exposed to PM2.5 suffer from diseases. In this study, we aim to establish a method to predict the vulnerable PM2.5-exposure individuals among elderly population. Fourteen elderly people were recruited from May 8 to July 4, 2016, in Nanjing, China. Ten physiological indicators were repeatedly measured for 15 times. Liner mixed-effects model, principal component analysis (PCA), and PM2.5 lag score were used to estimate the effects of PM2.5 on blood pressure, pulse, and lung function. As a result, each quartile increase of ambient PM2.5 was significantly associated with increased pulse (P < 0.05 for lag0, 1, 4, 0–1, 0–2, 0–3, and 0–5 days), decreased blood pressure (P < 0.05 for lag4 and 0–3 days), and decreased lung function (P < 0.05 for lag0, 1, 0–1, and 0–2 days) among the 14 elderly people. In terms of pulse or lung function, three elderly people were considered as vulnerable PM2.5-exposure individuals. No vulnerable individual was found for blood pressure. Blood pressure, pulse, and lung function could be affected by high-level PM2.5 exposure in elderly people. This method for screening three elderly people may provide a new insight on identifying the vulnerable PM2.5-exposure individuals.

Keywords

PM2.5 Elderly population Blood pressure Pulse Lung function Repeated-measure Vulnerable PM2.5-exposure individuals 

Notes

Funding information

This study was partly supported by grants from the National Key Research and Development Program of China (2017YFC0211600), The Natural Science Foundation of Jiangsu Province (15KJB330002), Undergraduates Training Programs of Innovation and Entrepreneurship of Jiangsu Province (201510312001Z), Collaborative research project of Southeast University-Nanjing Medical University (2242017K3DN16), Collaborative Innovation Center for Cancer Personalized Medicine, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (Public Health and Preventive Medicine).

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

Supplementary material

11356_2018_1412_MOESM1_ESM.docx (17 kb)
ESM 1 (DOCX 16 kb).

References

  1. Aaron CP, Chervona Y, Kawut SM, Diez Roux AV, Shen M, Bluemke DA, Van Hee VC, Kaufman JD, Barr RG (2016) Particulate matter exposure and cardiopulmonary differences in the multi-ethnic study of atherosclerosis. Environ Health Persp 124:1166–1173CrossRefGoogle Scholar
  2. Ajmani GS, Suh HH, Wroblewski KE, Kern DW, Schumm LP, Mcclintock MK, Yanosky JD, Pinto JM (2016) Fine particulate matter exposure and olfactory dysfunction among urban-dwelling older US adults. Environ Res 151:797–803.  https://doi.org/10.1016/j.envres.2016.09.012 CrossRefGoogle Scholar
  3. Ashcroft DM, Parker D (2009) Development of the pharmacy safety climate questionnaire: a principal components analysis. Qual Saf Health Care 18(1):28–31.  https://doi.org/10.1136/qshc.2006.022129 CrossRefGoogle Scholar
  4. Baccarelli A, Barretta F, Dou C, Zhang X, McCracken JP, Diaz A, Bertazzi PA, Schwartz J, Wang S, Hou L (2011) Effects of particulate air pollution on blood pressure in a highly exposed population in Beijing, China: a repeated-measure study. Environ Health 10(1):108.  https://doi.org/10.1186/1476-069X-10-108 CrossRefGoogle Scholar
  5. Bell ML, Son JY, Peng RD, Wang Y, Dominici F (2015) Ambient PM2.5 and risk of hospital admissions: do risks differ for men and women? Epidemiology 26(4):575–579.  https://doi.org/10.1097/EDE.0000000000000310 CrossRefGoogle Scholar
  6. Berhane (2008) Early diagnosis of asthma modifies the effect of air pollution on lung development in children. Epidemiology 19:S58Google Scholar
  7. Brunekreef B, Forsberg B (2005) Epidemiological evidence of effects of coarse airborne particles on health. Eur Respir J 26(2):309–318.  https://doi.org/10.1183/09031936.05.00001805 CrossRefGoogle Scholar
  8. Chan SH, Van Hee VC, Bergen S, Szpiro AA, Deroo LA, London SJ, Marshall JD, Kaufman JD, Sandler DP (2015) Long-term air pollution exposure and blood pressure in the sister study. Environ Health Persp 123:951CrossRefGoogle Scholar
  9. Chen R, Zhao A, Chen H, Zhao Z, Cai J, Wang C, Yang C, Li H, Xu X, Ha S, Li T, Kan H (2015a) Cardiopulmonary benefits of reducing indoor particles of outdoor origin: a randomized, double-blind crossover trial of air purifiers. J Am Coll Cardiol 65(21):2279–2287.  https://doi.org/10.1016/j.jacc.2015.03.553 CrossRefGoogle Scholar
  10. Chen R, Zhao Z, Sun Q, Lin Z, Zhao A, Wang C, Xia Y, Xu X, Kan H (2015b) Size-fractionated particulate air pollution and circulating biomarkers of inflammation, coagulation, and vasoconstriction in a panel of young adults. Epidemiology 26(3):328–336.  https://doi.org/10.1097/EDE.0000000000000273 CrossRefGoogle Scholar
  11. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V, Freedman G, Hubbell B, Jobling A, Kan H, Knibbs L, Liu Y, Martin R, Morawska L, Pope CA III, Shin H, Straif K, Shaddick G, Thomas M, van Dingenen R, van Donkelaar A, Vos T, Murray CJL, Forouzanfar MH (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389(10082):1907–1918.  https://doi.org/10.1016/S0140-6736(17)30505-6 CrossRefGoogle Scholar
  12. Dabass A, Talbott EO, Venkat A, Rager J, Marsh GM, Sharma RK, Holguin F (2016) Association of exposure to particulate matter (PM2.5) air pollution and biomarkers of cardiovascular disease risk in adult NHANES participants (2001–2008). Int J Hyg Environ Health 219(3):301–310.  https://doi.org/10.1016/j.ijheh.2015.12.002 CrossRefGoogle Scholar
  13. Dalby M, Gjesdal K (2012) Resting pulse rate as an indicator of health and disease. Tidsskr Nor Laegeforen 132(11):1348–1351.  https://doi.org/10.4045/tidsskr.11.0629 CrossRefGoogle Scholar
  14. Ebelt ST, Wilson WE, Brauer M (2005) Exposure to ambient and nonambient components of particulate matter: a comparison of health effects. Epidemiology 16(3):396–405.  https://doi.org/10.1097/01.ede.0000158918.57071.3e CrossRefGoogle Scholar
  15. Fan ZT, Meng Q, Weisel C, Laumbach R, Ohman-Strickland P, Shalat S, Hernandez MZ, Black K (2009) Acute exposure to elevated PM2.5 generated by traffic and cardiopulmonary health effects in healthy older adults. J Expo Sci Environ Epidemiol 19(5):525–533.  https://doi.org/10.1038/jes.2008.46 CrossRefGoogle Scholar
  16. Fisher JE, Loft S, Ulrik CS, Raaschou-Nielsen O, Hertel O, Tjonneland A, Overvad K, Nieuwenhuijsen MJ, Andersen ZJ (2016) Physical activity, air pollution, and the risk of asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 194(7):855–865.  https://doi.org/10.1164/rccm.201510-2036OC CrossRefGoogle Scholar
  17. Heinrich J, Slama R (2007) Fine particles, a major threat to children. Int J Hyg Environ Health 210(5):617–622.  https://doi.org/10.1016/j.ijheh.2007.07.012 CrossRefGoogle Scholar
  18. Hou L, Zhang X, Dioni L, Barretta F, Dou C, Zheng Y, Hoxha M, Bertazzi PA, Schwartz J, Wu S, Wang S, Baccarelli AA (2013) Inhalable particulate matter and mitochondrial DNA copy number in highly exposed individuals in Beijing, China: a repeated-measure study. Part Fibre Toxicol 10(1):17.  https://doi.org/10.1186/1743-8977-10-17 CrossRefGoogle Scholar
  19. Jaana H, Breton CV, Tang WHW, Frederick L, Hazen SL, Gilliland FD, Hooman A (2016) Ambient air pollution is associated with the severity of coronary atherosclerosis and incident myocardial infarction in patients undergoing elective cardiac evaluation. J Am Heart Assoc Cardiovasc Cerebrovasc Dis 5:e003947CrossRefGoogle Scholar
  20. Kalappanavar NK, Vinodkumar CS, Gouli C, Sanjay D, Nagendra K, Basavarajappa KG, Patil R (2012) Carbon particles in airway macrophage as a surrogate marker in the early detection of lung diseases. Int J Occup Environ Med 3(2):68–75Google Scholar
  21. Kulkarni N, Grigg J (2008) Effect of air pollution on children. Paed Child Healt-Can 18(5):238–243.  https://doi.org/10.1016/j.paed.2008.02.007 CrossRefGoogle Scholar
  22. Lepeule J, Laden F, Dockery D, Schwartz J (2012) Chronic exposure to fine particles and mortality: an extended follow-up of the Harvard Six Cities study from 1974 to 2009. Environ Health Perspect 120(7):965–970.  https://doi.org/10.1289/ehp.1104660 CrossRefGoogle Scholar
  23. Liang R, Zhang B, Zhao X, Ruan Y, Lian H, Fan Z (2014) Effect of exposure to PM2.5 on blood pressure: a systematic review and meta-analysis. J Hypertens 32(11):2130–40; discussion 2141.  https://doi.org/10.1097/HJH.0000000000000342 CrossRefGoogle Scholar
  24. Lipsett MJ, Ostro BD, Reynolds P, Goldberg D, Hertz A, Jerrett M, Smith DF, Garcia C, Chang ET, Bernstein L (2011) Long-term exposure to air pollution and cardiorespiratory disease in the California teachers study cohort. Am J Respir Crit Care Med 184(7):828–835.  https://doi.org/10.1164/rccm.201012-2082OC CrossRefGoogle Scholar
  25. Liu LS, Box M, Kalman D, Kaufman J, Koenig J, Larson T, Lumley T, Sheppard L, Wallace L (2003) Exposure assessment of particulate matter for susceptible populations in Seattle. Environ Health Persp 111(7):909–918.  https://doi.org/10.1289/ehp.6011 CrossRefGoogle Scholar
  26. Mar TF, Koenig JQ, Jansen K, Sullivan J, Kaufman J, Trenga CA, Siahpush SH, Liu LJ, Neas L (2005) Fine particulate air pollution and cardiorespiratory effects in the elderly. Epidemiology 16(5):681–687.  https://doi.org/10.1097/01.ede.0000173037.83211.d6 CrossRefGoogle Scholar
  27. Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, Anderson GL, Kaufman JD (2007) Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med 356(5):447–458.  https://doi.org/10.1056/NEJMoa054409 CrossRefGoogle Scholar
  28. Neupane B, Jerrett M, Burnett RT, Marrie T, Arain A, Loeb M (2010) Long-term exposure to ambient air pollution and risk of hospitalization with community-acquired pneumonia in older adults. Am J Respir Crit Care Med 181(1):47–53.  https://doi.org/10.1164/rccm.200901-0160OC CrossRefGoogle Scholar
  29. Pope CR, Burnett RT, Krewski D, Jerrett M, Shi Y, Calle EE, Thun MJ (2009) Cardiovascular mortality and exposure to airborne fine particulate matter and cigarette smoke: shape of the exposure-response relationship. Circulation 120(11):941–948.  https://doi.org/10.1161/CIRCULATIONAHA.109.857888 CrossRefGoogle Scholar
  30. Salvi S (2007) Health effects of ambient air pollution in children. Paediatr Respir Rev 8(4):275–280.  https://doi.org/10.1016/j.prrv.2007.08.008 CrossRefGoogle Scholar
  31. Schneider A, Neas LM, Graff DW, Herbst MC, Cascio WE, Schmitt MT, Buse JB, Peters A, Devlin RB (2010) Association of cardiac and vascular changes with ambient PM2.5 in diabetic individuals. Part Fibre Toxicol 7(1):14.  https://doi.org/10.1186/1743-8977-7-14 CrossRefGoogle Scholar
  32. Shi J, Lin Z, Chen R, Wang C, Yang C, Cai J, Lin J, Xu X, Ross JA, Zhao Z, Kan H (2017) Cardiovascular benefits of wearing particulate-filtering respirators: a randomized crossover trial. Environ Health Perspect 125(2):175–180.  https://doi.org/10.1289/EHP73 Google Scholar
  33. Shi L, Zanobetti A, Kloog I, Coull BA, Koutrakis P, Melly SJ, Schwartz JD (2016) Low-concentration PM2.5 and mortality: estimating acute and chronic effects in a population-based study. Environ Health Perspect 124(1):46–52.  https://doi.org/10.1289/ehp.1409111 Google Scholar
  34. Sullivan JH, Schreuder AB, Trenga CA, Liu SL, Larson TV, Koenig JQ, Kaufman JD (2005) Association between short term exposure to fine particulate matter and heart rate variability in older subjects with and without heart disease. Thorax 60(6):462–466.  https://doi.org/10.1136/thx.2004.027532 CrossRefGoogle Scholar
  35. To T, Zhu J, Villeneuve PJ, Simatovic J, Feldman L, Gao C, Williams D, Chen H, Weichenthal S, Wall C, Miller AB (2015) Chronic disease prevalence in women and air pollution—a 30-year longitudinal cohort study. Environ Int 80:26–32.  https://doi.org/10.1016/j.envint.2015.03.017 CrossRefGoogle Scholar
  36. Vidal-Petiot E, Ford I, Greenlaw N, Ferrari R, Fox KM, Tardif JC, Tendera M, Tavazzi L, Bhatt DL, Steg PG (2016) Cardiovascular event rates and mortality according to achieved systolic and diastolic blood pressure in patients with stable coronary artery disease: an international cohort study. Lancet 388(10056):2142–2152.  https://doi.org/10.1016/S0140-6736(16)31326-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Haiyan Chu
    • 1
    • 2
  • Junyi Xin
    • 1
    • 2
  • Qi Yuan
    • 1
  • Xu Zhang
    • 2
  • Wang Pan
    • 2
  • Xinying Zeng
    • 2
  • Yaoyao Chen
    • 1
  • Gaoxiang Ma
    • 1
  • Yuqiu Ge
    • 1
  • Mulong Du
    • 1
  • Na Tong
    • 1
  • Xiaobo Li
    • 3
  • Zhengdong Zhang
    • 1
    • 2
  • Meilin Wang
    • 1
    • 2
  1. 1.Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public HealthNanjing Medical UniversityNanjingChina
  2. 2.Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public HealthNanjing Medical UniversityNanjingChina
  3. 3.Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public HealthSoutheast UniversityNanjingChina

Personalised recommendations