Screening cyhalothrin degradation strains from locust epiphytic bacteria and studying Paracoccus acridae SCU-M53 cyhalothrin degradation process

  • Jiewei Tian
  • Xiufeng Long
  • Shuai Zhang
  • Qiumian Qin
  • Longzhan Gan
  • Yongqiang Tian
Research Article

Abstract

All locust epiphytic bacteria were screened and a total of 62 epiphytic bacteria were obtained from samples of Acrida cinerea. Via phylogenetic analysis, the 62 epiphytic bacteria were allocated to 27 genera, 18 families, 13 orders, six classes, and four phylums. Then, cyhalothrin degradation experiments were conducted, and the 10 strains that degraded more than 30% cyhalothrin and Paracoccus acridae SCU-M53 showed the highest cyhalothrin degradation rate of 70.5%. Furthermore, Paracoccus acridae SCU-M53 was selected for optimal cyhalothrin biodegradation conditions via the response surface method (Design-Expert). Under the optimum conditions (28 °C, 75 mg/L, and 180 rpm), the cyhalothrin degradation rate reached 79.84% after 2 days. This suggests the possibility that isolating biodegradation cyhalothrin strains from Acrida cinerea is feasible.

Keywords

Epiphytic bacteria Biodiversity Cyhalothrin Biodegradation Acrida cinerea 

Supplementary material

11356_2018_1410_MOESM1_ESM.docx (16 kb)
Table S1 (DOCX 16 kb)
11356_2018_1410_Fig10_ESM.gif (7 kb)
Figure S1

Neighbour joining tree for Actinobacteria associated with Acrida cinerea based on partial sequences of the 16S rRNA gene. The tree was constructed by using Kimura 2-parameter model in MEGA 7.0. Bar 0.02 expected changes per site. Bootstrap values (1000 replications) > are shown. (GIF 7 kb)

11356_2018_1410_MOESM2_ESM.tif (2.6 mb)
High resolution image (TIFF 2613 kb)
11356_2018_1410_Fig11_ESM.gif (6 kb)
Figure S2

Neighbour joining tree for Bacilli associated with Acrida cinerea based on partial sequences of the 16S rRNA gene. The tree was constructed by using Kimura 2-parameter model in MEGA 7.0. Bar 0.01 expected changes per site. Bootstrap values (1000 replications) > are shown. (GIF 6 kb)

11356_2018_1410_MOESM3_ESM.tif (2.1 mb)
High resolution image (TIFF 2158 kb)
11356_2018_1410_Fig12_ESM.gif (8 kb)
Figure S3

Neighbour joining tree for betaproteobacteria and alphaproteobacteria associated with Acrida cinerea based on partial sequences of the 16S rRNA gene. The tree was constructed by using Kimura 2-parameter model in MEGA 7.0. Bar 0.02 expected changes per site. Bootstrap values (1000 replications) > are shown. (GIF 7 kb)

11356_2018_1410_MOESM4_ESM.tif (2.6 mb)
High resolution image (TIFF 2674 kb)
11356_2018_1410_Fig13_ESM.gif (13 kb)
Figure S4

Neighbour joining tree for Gammproteobacteria associated with Acrida cinerea based on partial sequences of the 16S rRNA gene. The tree was constructed by using Kimura 2-parameter model in MEGA 7.0. Bar 0.01 expected changes per site. Bootstrap values (1000 replications) > are shown. (GIF 12 kb)

11356_2018_1410_MOESM5_ESM.tif (5 mb)
High resolution image (TIFF 5118 kb)
11356_2018_1410_Fig14_ESM.gif (8 kb)
Figure S5

Neighbour joining tree for Sphingomonas associated with Acrida cinerea based on partial sequences of the 16S rRNA gene. The tree was constructed by using Kimura 2-parameter model in MEGA 7.0. Bar 0.02 expected changes per site. Bootstrap values (1000 replications) > are shown. (GIF 7 kb)

11356_2018_1410_MOESM6_ESM.tif (3.4 mb)
High resolution image (TIFF 3479 kb)

References

  1. Akbar S, Sultan S, Kertesz M (2015a) Bacterial community analysis of cypermethrin enrichment cultures and bioremediation of cypermethrin contaminated soils. J Basic Microb 55(7):819–829.  https://doi.org/10.1002/jobm.201400805. CrossRefGoogle Scholar
  2. Akbar S, Sultan S, Kertesz M (2015b) Determination of cypermethrin degradation potential of soil bacteria along with plant growth-promoting characteristics. Curr Microbiol 70(1):75–84.  https://doi.org/10.1007/s00284-014-0684-7 CrossRefGoogle Scholar
  3. Antwi FB, Reddy GVP (2015) Toxicological effects of pyrethroids on non-target aquatic insects. Environ Toxicol Pharmacol 40(3):915–923.  https://doi.org/10.1016/j.etap.2015.09.023 CrossRefGoogle Scholar
  4. Arora PK, Ch S, Chv R (2012) Degradation of chlorinated nitroaromatic compounds. Appl Microbiol Biotechnol 93:2265–2277.  https://doi.org/10.1007/s00253-012-3927-1 CrossRefGoogle Scholar
  5. Broderick NA, Raffa KF, Handelsman J (2006) Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc Natl Acad Sci U S A 103(41):15196–15199.  https://doi.org/10.1073/pnas.0604865103 CrossRefGoogle Scholar
  6. Chen S, Yang L, Hu M, Liu J (2011a) Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils. Appl Microbiol Biotechnol 90(2):755–767.  https://doi.org/10.1007/s00253-010-3035-z CrossRefGoogle Scholar
  7. Chen S, Hu M, Liu J, Zhong G, Yang L, Rizwan-ul-Haq M, Han H (2011b) Biodegradation of beta-cypermethrin and 3-phenoxybenzoic acid by a novel Ochrobactrum lupini DG-S-01. J Hazard Mater 187(1-3):433–440.  https://doi.org/10.1016/j.jhazmat.2011.01.049 CrossRefGoogle Scholar
  8. Chen S, Hu W, Xiao Y, Deng Y, Jia J, Hu M (2012) Degradation of 3-phenoxybenzoic acid by a Bacillus sp. PLoS One 7(11):e50456.  https://doi.org/10.1371/journal.pone.0050456 CrossRefGoogle Scholar
  9. Chen S, Dong YH, Chang C, Deng Y, Zhang XF, Zhong G, Song H, Hu M, Zhang L (2013) Characterization of a novel cyfluthrin-degrading bacterial strain Brevibacterium aureum and its biochemical degradation pathway. Bioresour Technol 132:16–23.  https://doi.org/10.1016/j.biortech.2013.01.002 CrossRefGoogle Scholar
  10. Chen S, Deng Y, Chang C, Jasmine L, Cheng Y, Cui Z, He J, Hu M, Zhang L (2015) Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS−19. Sci Rep 5(1):8784.  https://doi.org/10.1038/srep08784 CrossRefGoogle Scholar
  11. Cheng D, Guo Z, Riegler M, Xi Z, Liang G, Xu Y (2017) Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (hendel). Microbiome 5(1):13.  https://doi.org/10.1186/s40168-017-0236-z CrossRefGoogle Scholar
  12. Colombo R, Ferreira TCR, Alves SA, Carneiro RL, Lanza MRV (2013) Application of the response surface and desirability design to the Lambda-cyhalothrin degradation using photo-Fenton reaction. J Environ Manag 118(2):32–39.  https://doi.org/10.1016/j.jenvman.2012.12.035 CrossRefGoogle Scholar
  13. Cui XL, Mao PH, Zeng M, Li WJ, Zhang LP, Xu LH, Jiang CL (2001) Streptimonospora salina gen. nov. sp. nov. a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 51(2):357–363.  https://doi.org/10.1099/00207713-51-2-357 CrossRefGoogle Scholar
  14. Cycoń M, Wójcik M, Piotrowska-Seget Z (2011) Biodegradation kinetics of the benzimidazole fungicide thiophanate-methyl by bacteria isolated from loamy sand soil. Biodegradation 22:573–583.  https://doi.org/10.1007/s10532-010-9430-4. CrossRefGoogle Scholar
  15. Cycoń M, Wójcik M, Piotrowska-Seget Z (2014) Enhancement of deltamethrin degradation by soil bioaugmentation with two different strains of Serratia marcescens. Int J Environ Sci Technol 11:1305–1316.  https://doi.org/10.1007/s13762-013-0322-0 CrossRefGoogle Scholar
  16. Fenlon AK, Jones CK, Semple TK (2011) The effect of soil: water ratios on the induction of isoproturon, cypermethrin and diazinon mineralisation. Chemosphere 82(2):163–168.  https://doi.org/10.1016/j.chemosphere.2010.10.027 CrossRefGoogle Scholar
  17. Feo ML, Eljarrat E, Barcelo D (2010) Determination of pyrethroid insecticides in environmental samples. Trends Anal Chem 29:692–705CrossRefGoogle Scholar
  18. Grosman N, Diel F (2005) Influence of pyrethroids and piperonyl butoxide on the Ca2+-ATPase activity of rat brain synaptosomes and leukocyte membranes. Int Immunopharmacol 5:63–70CrossRefGoogle Scholar
  19. Guo P, Wang B, Hang B, Li L, Ali SW, He J, Li S (2009) Pyrethroid-degrading Sphingobium sp. JZ-2 and the purification and characterization of a novel pyrethroid hydrolase. Int Biodeter Biodegr 63(8):1107–1112.  https://doi.org/10.1016/j.ibiod.2009.09.008 CrossRefGoogle Scholar
  20. Hong YF, Zhou J, Hong Q, Wang Q, Jiang JD, Li SP (2010) Characterization of a fenpropathrin-degrading strain and construction of a genetically engineered microorganism for simultaneous degradation of methyl parathion and fenpropathrin. J Environ Manag 91(11):2295–2300.  https://doi.org/10.1016/j.jenvman.2010.06.010 CrossRefGoogle Scholar
  21. Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T (2012) Symbiont-mediated insecticide resistance. Proc Natl Acad Sci U S A 109(22):8618–8622.  https://doi.org/10.1073/pnas.1200231109 CrossRefGoogle Scholar
  22. Kolaczinski JH, Curtis CF (2004) Chronic illness as a result of low-level exposure to synthetic pyrethroid insecticides: a review of the debate. Food Chem Toxicol 4:697–706CrossRefGoogle Scholar
  23. Kumar S, Stecher G, Tamura K (2016) Mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefGoogle Scholar
  24. Li H, Tyler MW, Lydy MJ, You J (2011) Occurrence and distribution of sediment-associated insecticides in urban waterways in the pearl river delta. China Chemosphere 82(10):1373–1379.  https://doi.org/10.1016/j.chemosphere.2010.11.074 CrossRefGoogle Scholar
  25. Li W, Jin D, Shi C, Li F (2017) Midgut bacteria in deltamethrin-resistant, deltamethrin-susceptible, and field-caught populations of plutella xylostella, and phenomics of the predominant midgut bacterium Enterococcus mundtii. Sci Rep 7(1):1947.  https://doi.org/10.1038/s41598-017-02138-9 CrossRefGoogle Scholar
  26. Lin QS, Chen SH, Hu MY, Haq MRU, Yang L, Li H (2011) Biodegradation of cypermethrin by a newly isolated Actinomycetes HU-S-01 from wastewater sludge. Int J Environ Sci Technol 8(4):45–56.  https://doi.org/10.1007/s00253-011-3136-3 CrossRefGoogle Scholar
  27. Marettova E, Maretta M, Legáth J (2017) Effect of pyrethroids on female genital system. Review. Anim Reprod Sci 184:132–138CrossRefGoogle Scholar
  28. Mehler WT, Li H, Lydy MJ, You J (2011) Identifying the causes of sediment-associated toxicity in urban waterways of the Pearl River Delta, China. Environ Sci Technol 45(5):1812–1819.  https://doi.org/10.1021/es103552d CrossRefGoogle Scholar
  29. Perry MJ, Venners SA, Barr DB, Xu XP (2007) Environmental pyrethroid and organophosphorus insecticide exposures and sperm concentration. Reprod Toxicol 23(1):113–118.  https://doi.org/10.1016/j.reprotox.2006.08.005 CrossRefGoogle Scholar
  30. Shafer TJ, Meyer DA, Crofton KM (2005) Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs. Environ Health Perspect 113(2):123–136.  https://doi.org/10.1289/ehp.7254 CrossRefGoogle Scholar
  31. Sinha G, Agrawal AK, Islam F, Seth K, Chaturvedi RK, Shukla S (2004) Mosquito repellent (pyrethroid-based) induced dysfunction of blood-brain barrier permeability in developing brain. Int J Dev Neurosci 22(1):31–37.  https://doi.org/10.1016/j.ijdevneu.2003.10.005 CrossRefGoogle Scholar
  32. Song H, Zhou Z, Liu Y, Si D, Xu H (2015) Kinetics and mechanism of fenpropathrin biodegradation by a newly isolated Pseudomonas aeruginosa, sp. strain JQ-41. Curr Microbiol 71(3):326–332.  https://doi.org/10.1007/s00284-015-0852-4 CrossRefGoogle Scholar
  33. Tago K, Okubo T, Itoh H, Kikuchi Y, Hori T, Sato Y, Nagayama A, Hayashi K, Ikeda S, Hayatsu M (2015) Insecticide-degrading Burkholderia symbionts of the stinkbug naturally occupy various environments of sugarcane fields in a southeast island of Japan. Microbes Environ 30:29–36.  https://doi.org/10.1264/jsme2.ME14124. CrossRefGoogle Scholar
  34. Tang A, Wang B, Liu Y, Li Q, Tong Z, Wei Y (2015) Biodegradation and extracellular enzymatic activities of Pseudomonas aeruginosa strain GF31 on β-cypermethrin. Environ Sci Pollut Res 22(17):13049–13057.  https://doi.org/10.1007/s11356-015-4545-0 CrossRefGoogle Scholar
  35. Wang C, Chen F, Zhang Q, Fang Z (2009) Chronic toxicity and cytotoxicity of synthetic pyrethroid insecticide cis-bifenthrin. J Environ Sci 27:1710–1715CrossRefGoogle Scholar
  36. Wang B, Ma Y, Zhou W, Zheng J, Zhu J, He J, Li S (2011) Biodegradation of synthetic pyrethroids by Ochrobactrum tritici strain PYD-1. World J Microb Biot 27(10):2315–2324.  https://doi.org/10.1007/s11274-011-0698-2 CrossRefGoogle Scholar
  37. Wang YH, Du LW, Li HH, Feng GJ, Luo T (2016) Screening, identification and characteristics of lambda-cyhalothrin degrading fungus. Southwest China J Agric Sci 29:1879–1883.  https://doi.org/10.16213/j.cnki.scjas.2016.08.02
  38. Xiao Y, Chen S, Gao Y, Hu W, Hu M, Zhong G (2015) Isolation of a novel beta-cypermethrin degrading strain Bacillus subtilis, BSF01 and its biodegradation pathway. Appl Microbiol Biot 99(6):2849–2859.  https://doi.org/10.1007/s00253-014-6164-y CrossRefGoogle Scholar
  39. Zhang C, Wang S, Yan Y (2011) Isomerization and biodegradation of beta-cypermethrin by Pseudomonas aeruginosa CH7 with biosurfactant production. Bioresour Technol 102(14):7139–7146.  https://doi.org/10.1016/j.biortech.2011.03.086 CrossRefGoogle Scholar
  40. Zhang S, Gan L, Qin Q, Long X, Zhang Y, Chu Y, Tian Y (2016) Paracoccus acridae sp. nov. isolated from insect Acrida cinerea living in deserted cropland. Int J Syst Evol Microbiol 66(9):3492–3497.  https://doi.org/10.1099/ijsem.0.001222 CrossRefGoogle Scholar
  41. Zhao H, Geng Y, Chen L, Tao K, Hou T (2013) Biodegradation of cypermethrin by a novel Catellibacterium sp. strain CC-5 isolated from contaminated soil. Can J Microbiol 59(5):311–317.  https://doi.org/10.1139/cjm-2012-0580 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jiewei Tian
    • 1
  • Xiufeng Long
    • 1
  • Shuai Zhang
    • 1
  • Qiumian Qin
    • 1
  • Longzhan Gan
    • 1
  • Yongqiang Tian
    • 1
  1. 1.Key Laboratory of Leather Chemistry and Engineering(Sichuan University), Ministry of Education and College of Light Industry, Textile & Food EngineeringSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations