Skip to main content

Advertisement

Log in

In situ investigation of heavy metals at trace concentrations in greenhouse soils via portable X-ray fluorescence spectroscopy

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Soil pollution by heavy metals (HMs) has rapidly become a major threat to vegetable security. Nearly all cultivated soils are at risk of metal accumulation, and greenhouse soils are among the most heavily impacted soils. In this study, a rapid assessment of HMs at trace concentrations was conducted via portable X-ray fluorescence (PXRF) spectroscopy in Shouguang, China. Measurements were made via PXRF under in situ, ex situ and sieved conditions and by inductively coupled plasma mass spectrometry (ICP-MS) after acid digestion. The performance of each PXRF measure relative to the ICP-MS method was assessed by linear regression. Redundancy analysis was performed to quantify the proportion of explained variability between the PXRF and ICP-MS data. Evaluation of the possible sources of HMs and their potential risks was then conducted by multivariate analysis. The results showed that the PXRF data were closely correlated with ICP-MS quantification for Cu, Mn and Zn, whereas no significant correlations were found for As, Ni and Pb. The uncertainties of PXRF measurement derived from soil heterogeneity accounted for 20.02% of total variability and those from moisture and particle size accounted for 20.15%. The geo-accumulation index (Igeo) indicated that the greenhouse soils were potentially contaminated by Cu and Zn (Igeo > 0), which can be attributed to anthropogenic activities. Overall, PXRF spectroscopy is promising as a rapid and nondestructive in situ technique for assessing the potential risks of HMs at trace concentrations in greenhouse soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bai LY, Zeng XB, Su SM, Duan R, Wang YN, Gao X (2015) Heavy metal accumulation and source analysis in greenhouse soils of Wuwei District, Gansu Province, China. Environ Sci Pollut Res 22(7):5359–5369. https://doi.org/10.1007/s11356-014-3763-1

    Article  CAS  Google Scholar 

  • Bao SD (2005) Soil analytical methods of agronomic chemistry (in Chinese). China Agricultural Science and Technology Press, Beijing, pp 25–210

    Google Scholar 

  • Bernick M, Kalnicky D, Prince G, Singhvi R (1995) Results of field-portable X-ray fluorescence analysis of metal contaminants in soil and sediment. J Hazard Mater 43(1-2):101–110. https://doi.org/10.1016/0304-3894(95)00030-X

    Article  CAS  Google Scholar 

  • Boon KA, Ramsey MH (2012) Judging the fitness of on-site measurements by their uncertainty, including the contribution from sampling. Sci Total Environ 419:196–207. https://doi.org/10.1016/j.scitotenv.2011.12.001

    Article  CAS  Google Scholar 

  • Chai Y, Guo J, Chai SL, Cai J, Xue LF, Zhang QW (2015) Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng-Songyuan area, Jilin Province, Northeast China. Chemosphere 134:67–75. https://doi.org/10.1016/j.chemosphere.2015.04.008

    Article  CAS  Google Scholar 

  • Chakraborty S, Man T, Paulette L, Deb S, Li B, Weindorf DC, Frazier M (2017) Rapid assessment of smelter/mining soil contamination via portable X-ray fluorescence spectrometry and indicator kriging. Geoderma 306:108–119. https://doi.org/10.1016/j.geoderma.2017.07.003

    Article  CAS  Google Scholar 

  • Chen HM (2005) Environmental soil science (in Chinese). Science Press, Beijing

    Google Scholar 

  • Chen JS, Wei FS, Zheng CJ, Wu YY, Adriano DC (1991) Background concentrations of elements in soils of China. Water Air Soil Pollut 57:699–712

    Article  Google Scholar 

  • Chen T, Liu XM, Zhu MZ, Zhao KL, Wu JJ, Xu JM, Huang PM (2008) Identification of trace element sources and associated risk assessment in vegetable soils of the urban-rural transitional area of Hangzhou, China. Environ Pollut 151(1):67–78. https://doi.org/10.1016/j.envpol.2007.03.004

    Article  CAS  Google Scholar 

  • Chen Y, Huang B, Hu WY, Weindorf DC, Liu XX, Niedermann S (2014) Assessing the risks of trace elements in environmental materials under selected greenhouse vegetable production systems of China. Sci Total Environ 470:1140–1150

    Article  Google Scholar 

  • Chou J, Elbers D, Clement G, Bursavich B, Tian TA, Zhang WD, Yang K (2010) In situ monitoring (field screening) and assessment of lead and arsenic contaminants in the greater New Orleans area using a portable X-ray fluorescence analyser. J Environ Monit 12(9):1722–1729. https://doi.org/10.1039/c0em00012d

    Article  CAS  Google Scholar 

  • Cooperative Research Group on Chinese Soil Taxonomy (CRG-CST) (2001) Chinese Soil Taxonomy. Science Press, Beijing & New York, pp 1–203

    Google Scholar 

  • Du GD, Lei M, Zhou GD, Chen TB, Qiu RL (2015) Evaluation of field portable X-Ray fluorescence performance for the analysis of Ni in soil. Spectrosc Spectr Anal 35:809–813.

    CAS  Google Scholar 

  • Fang SZ, Xie LQ, Zhang WQ, Zhang X, Li XM (1991) Background values of nine elements in agricultural soil and crops of brown soil area in Shandong province (in Chinese). Shandong Agricultural Sci 1:24–27

    Google Scholar 

  • Fujimori T, Takigami H (2014) Pollution distribution of heavy metals in surface soil at an informal electronic-waste recycling site. Environ Geochem Health 36(1):159–168. https://doi.org/10.1007/s10653-013-9526-y

    Article  CAS  Google Scholar 

  • Gil C, Boluda R, Ramos J (2004) Determination and evaluation of cadmium, lead and nickel in greenhouse soils of Almerı́a (Spain). Chemosphere 55:1027–1034

    Article  CAS  Google Scholar 

  • Gutiérrez-Ginés MJ, Pastor J, AJ H’a (2013) Assessment of field portable X-ray fluorescence spectrometry for the in situ determination of heavy metals in soils and plants. Environmental Science-Processes & Impacts 15(8):1545–1552. https://doi.org/10.1039/c3em00078h

    Article  Google Scholar 

  • Hejcman M, Szakova J, Schellberg J, Srek P, Tlustos P (2009) The Rengen grassland experiment soil contamination by trace elements after 65 years of Ca, N, P and K fertiliser application. Nutr Cycl Agroecosyst 83:39–50

    Article  CAS  Google Scholar 

  • Horta A, Malone B, Stockmann U, Minasny B, Bishop TFA, McBratney AB, Pallasser R, Pozza L (2015) Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: a prospective review. Geoderma 241–242:180–209.

    Article  Google Scholar 

  • Jang M (2010) Application of portable X-ray fluorescence (pXRF) for heavy metal analysis of soils in crop fields near abandoned mine sites. Environ Geochem Health 32(3):207–216. https://doi.org/10.1007/s10653-009-9276-z

    Article  CAS  Google Scholar 

  • Kilbride C, Poole J, Hutchings TR (2006) A comparison of Cu, Pb, As, Cd, Zn, Fe, Ni and Mn determined by acid extraction/ICP-OES and ex situ field portable X-ray fluorescence analyses. Environ Pollut 143:16–23

    Article  CAS  Google Scholar 

  • Kong XL, Cao J, Tang RY, Zhang SQ, Dong F (2014) Pollution of intensively managed greenhouse soils by nutrients and heavy metals in the Yellow River irrigation region, Northwest China. Environ Monit Assess 186(11):7719–7731. https://doi.org/10.1007/s10661-014-3962-8

    Article  CAS  Google Scholar 

  • Laiho JV, Perämäki P (2005) Evaluation of portable X-ray fluorescence (PXRF) sample preparation methods. Special paper-Geological Survey Finland 38:73–82

    Google Scholar 

  • Li C, Li F, Wu Z, Cheng J (2015a) Effects of landscape heterogeneity on the elevated trace metal concentrations in agricultural soils at multiple scales in the Pearl River Delta, South China. Environ Pollut 206:264–274. https://doi.org/10.1016/j.envpol.2015.07.007

    Article  CAS  Google Scholar 

  • Li YB, Duanp ZW, Liu GL, Kalla P, Scheidt D, Cai Y (2015b) Evaluation of the possible sources and controlling factors of toxic metals/metalloids in the Florida Everglades and their potential risk of exposure. Environ Sci Technol 49(16):9714–9723. https://doi.org/10.1021/acs.est.5b01638

    Article  CAS  Google Scholar 

  • Lv J, Liu Y, Zhang Z, Dai J, Dai B, Zhu Y (2015) Identifying the origins and spatial distributions of heavy metals in soils of Ju country (eastern China) using multivariate and geostatistical approach. J Soils Sediments 15(1):163–178. https://doi.org/10.1007/s11368-014-0937-x

    Article  CAS  Google Scholar 

  • McComb JQ, Rogers C, Han FXX, Tchounwou PB (2014) Rapid screening of heavy metals and trace elements in environmental samples using portable X-ray fluorescence spectrometer, a comparative study. Water Air Soil Pollution 225(12). https://doi.org/10.1007/s11270-014-2169-5

  • McLaren TI, Guppy CN, Tighe MK, Forster N, Grave P, Lisle LM, Bennett JW (2012) Rapid, nondestructive total elemental analysis of vertisol soils using portable X-ray fluorescence. Soil Sci Soc Am J 76(4):1436–1445. https://doi.org/10.2136/sssaj2011.0354

    Article  CAS  Google Scholar 

  • Müller G (1979) Heavy metals in sediment of the Rhine-changes since 1971. Umschau in Wissenschaft und Technik 79:778–783

    Google Scholar 

  • Parsons C, Grabulosa EM, Pili E, Floor GH, Roman-Ross G, Charlet L (2013) Quantification of trace arsenic in soils by field-portable X-ray fluorescence spectrometry: considerations for sample preparation and measurement conditions. J Hazard Mater 262:1213–1222. https://doi.org/10.1016/j.jhazmat.2012.07.001

    Article  CAS  Google Scholar 

  • Paulette L, Man T, Weindorf DC, Person T (2015) Rapid assessment of soil and contaminant variability via portable x-ray fluorescence spectroscopy: Copsa Mica, Romania. Geoderma 243:130–140

    Article  Google Scholar 

  • Peinado FM, Ruano SM, Gonzalez MGB, Molina CE (2010) A rapid field procedure for screening trace elements in polluted soil using portable X-ray fluorescence (PXRF). Geoderma 159(1-2):76–82. https://doi.org/10.1016/j.geoderma.2010.06.019

    Article  CAS  Google Scholar 

  • Radu T, Diamond D (2009) Comparison of soil pollution concentrations determined using AAS and portable XRF techniques. J Hazard Mater 171(1-3):1168–1171. https://doi.org/10.1016/j.jhazmat.2009.06.062

    Article  CAS  Google Scholar 

  • Ramsey MH, Argyraki A (1997) Estimation of measurement uncertainty from field sampling: implications for the classification of contaminated land. Sci Total Environ 198(3):243–257. https://doi.org/10.1016/S0048-9697(97)05456-9

    Article  CAS  Google Scholar 

  • Ramsey MH, Boon KA (2012) Can in situ geochemical measurements be more fit-for-purpose than those made ex situ? Appl Geochem 27(5):969–976. https://doi.org/10.1016/j.apgeochem.2011.05.022

    Article  CAS  Google Scholar 

  • R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Available at: http://www.R-project.org/

    Google Scholar 

  • Rodríguez Martín JA, Ramos-Miras JJ, Boluda R, Gil C (2013) Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain). Geoderma 200:180–188

    Article  Google Scholar 

  • Rouillon M, Taylor MP (2016) Can field portable X-ray fluorescence (pXRF) produce high quality data for application in environmental contamination research? Environ Pollut 214:255–264. https://doi.org/10.1016/j.envpol.2016.03.055

    Article  CAS  Google Scholar 

  • Rouillon M, Taylor MP, Dong C (2017) Reducing risk and increasing confidence of decision making at a lower cost: in-situ pXRF assessment of metal-contaminated sites. Environ Pollut 229:780–789. https://doi.org/10.1016/j.envpol.2017.06.020

    Article  CAS  Google Scholar 

  • Sadys M, Strzelczak A, Grinn-Gofron A, Kennedy R (2015) Application of redundancy analysis for aerobiological data. Int J Biometeorol 59(1):25–36. https://doi.org/10.1007/s00484-014-0818-4

    Article  Google Scholar 

  • Schneider JF, Johnson D, Stoll N, Thurow K, Thurow K (1999) Portable X-ray fluorescence spectrometry characterization of arsenic contamination in soil at a German military site. J Process Anal Chem 4:12–17

    Google Scholar 

  • Sharma A, Weindorf DC, Man T, Aldabaa AAA, Chakraborty S (2014) Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH). Geoderma 232-234:141–147. https://doi.org/10.1016/j.geoderma.2014.05.005

    Article  CAS  Google Scholar 

  • Sharma A, Weindorf DC, Wang DD, Chakraborty S (2015) Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC). Geoderma 239–240:130–134

    Article  Google Scholar 

  • Srek P, Hejcman M, Kunzova E (2010) Multivariate analysis of relationship between potato (Solanum tuberosum L.) yield, amount of applied elements, their concentrations in tubers and uptake in a long-term fertilizer experiment. Field Crop Res 118:183–193

    Article  Google Scholar 

  • State Environment Protection Administration of China (SEPAC) (2007) Environmental quality evaluation standard for farmland of greenhouse vegetables production (HJ 333-2006). Available at: http://kjs.mep.gov.cn/hjbhbz/bzwb/stzl/200611/W020111221530938739315

  • Sungur A, Özcan H (2015) Chemometric and geochemical study of the heavy metal accumulation in the soils of a salt marsh area (Kavak Delta, NW Turkey). J Soils Sediments 15(2):323–331. https://doi.org/10.1007/s11368-014-1013-2

    Article  CAS  Google Scholar 

  • Swanhart S, Weindorf DC, Chakraborty S, Bakr N, Zhu YD (2014) Soil salinity measurement via portable X-ray fluorescence spectrometry. Soil Sci 179:417–423

    Article  CAS  Google Scholar 

  • Ulmanu M, Anger I, Gamenţ E, Mihalache M, Plopeanu G, Ilie L (2011) Rapid determination of some heavy metals in soil using an X-ray fluorescence portable instrument. Research Journal of Agricultural Science:235–241

  • USEPA (2007) Method 6200: Field portable X-ray fluorescence spectrometry for the determination of elemental concentrations in soil and sediment.Available at: https://www.epa.gov/sites/production/files/2015-12/documents/6200.pdf

  • Walkley A (1947) A critical examination of a rapid method for determining organic carbon in soils—effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci 63(4):251–265. https://doi.org/10.1097/00010694-194704000-00001

    Article  CAS  Google Scholar 

  • Weindorf DC, Zhu YD, Chakraborty S, Bakr N, Huang B (2012) Use of portable X-ray fluorescence spectrometry for environmental quality assessment of peri-urban agriculture. Environ Monit Assess 184(1):217–227. https://doi.org/10.1007/s10661-011-1961-6

    Article  Google Scholar 

  • Weindorf DC, Herrero J, Castañeda C, Bakr N, Swanhart S (2013a) Direct soil gypsum quantification via portable X-ray fluorescence spectrometry. Soil Sci Soc Am J 77:2071–2077

    Article  CAS  Google Scholar 

  • Weindorf DC, Paulette L, Man T (2013b) In-situ assessment of metal contamination via portable X-ray fluorescence spectroscopy: Zlatna, Romania. Environ Pollut 182:92–100

    Article  CAS  Google Scholar 

  • Weindorf DC, Bakr N, Zhu YD (2014) Advances in portable X-ray fluorescence (PXRF) for environmental, pedological, and agronomic applications. In: Sparks DL (ed) Advances in agronomy. Advances in Agronomy, Academic Press, Newark, pp 1–45

  • Yan ZJ, Liu PP, Li YH, Ma L, Alva A, Dou ZX, Chen Q, Zhang FS (2013) Phosphorus in China's intensive vegetable production systems: overfertilization, soil enrichment, and environmental implications. J Environ Qual 42(4):982–989. https://doi.org/10.2134/jeq2012.0463

    Article  CAS  Google Scholar 

  • Yu B, Song W, Lang Y (2017) Spatial patterns and driving forces of greenhouse land change in Shouguang City, China. Sustainability 9(3):359. https://doi.org/10.3390/su9030359

    Article  Google Scholar 

  • Zhang CS (2006) Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environ Pollut 142(3):501–511. https://doi.org/10.1016/j.envpol.2005.10.028

    Article  CAS  Google Scholar 

  • Zhao YC, Wang ZG, Sun WX, Huang B, Shi XZ, Ji JF (2010) Spatial interrelations and multi-scale sources of soil heavy metal variability in a typical urban-rural transition area in Yangtze River Delta region of China. Geoderma 156(3-4):216–227. https://doi.org/10.1016/j.geoderma.2010.02.020

    Article  CAS  Google Scholar 

  • Zhu YD, Weindorf DC, Zhang WT (2011) Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture Geoderma 167–168:167–177

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (41473073), the Key Frontier Project of Institute of Soil Science, Chinese Academy of Sciences (Grant No. ISSASIP1629) and the Key Science and Technology Demonstration Project of Jiangsu Province (Grant No. BE2016812).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Huang.

Additional information

Responsible editor: Roberto Terzano

Electronic supplementary material

ESM 1

(DOCX 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, K., Huang, B., Xing, Z. et al. In situ investigation of heavy metals at trace concentrations in greenhouse soils via portable X-ray fluorescence spectroscopy. Environ Sci Pollut Res 25, 11011–11022 (2018). https://doi.org/10.1007/s11356-018-1405-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1405-8

Keywords

Navigation