Genotoxicity of spent pot liner as determined with the zebrafish (Danio rerio) experimental model

  • Tássia F. D. Castro
  • Isadora M. Paiva
  • Aline F. S. Carvalho
  • Isadora L. Assis
  • Marcel J. Palmieri
  • Larissa F. Andrade-Vieira
  • Silvana Marcussi
  • Luis D. Solis-Murgas
Research Article
  • 22 Downloads

Abstract

Spent pot liner (SPL) is a solid waste generated during the primary smelting of aluminum, and its toxicity is attributed to the presence of fluoride, cyanide, and aluminum salts, which can be leached into aquatic ecosystems. Since the effects of this waste on aquatic life forms have not yet been investigated, the objective of our study was to evaluate the toxicity of simulated leachates of SPL on zebrafish (Danio rerio). Animals were exposed to 0 (control), 0.32, 0.64, or 0.95 g L−1 of SPL for 24, 72, and 96 h, and genotoxicity was accessed through micronucleus and comet assays. All of the tested treatments induced DNA fragmentation, and the observed frequency of micronuclei and damaged nucleoids generally increased with increasing SPL concentration. The highest frequency of micronuclei (3.3 per 3000 erythrocytes) was detected after 96 h of exposure with 0.95 g L−1 SPL. In the comet assay, nucleoids classified with highest level of damage in relation to the control were observed principally after 24 and 96 h of exposure. The data obtained in this study confirm the genotoxicaction and mutagenic potential of SPL and indicate that open-air deposits of the waste material could represent a health risk to humans and ecosystems alike.

Keywords

Comet assay Micronucleus assay Gill cells Aluminum DNA fragmentation 

Notes

Acknowledgments

We thank Pedro Henrique Cesar for support in the formatting of Fig. 4.

Compliance with ethical standards

The handling of animals and the experiments conducted with them were carried out in strict accordance with institutional (Animal Experimentation Ethics Committee of the Federal University of Lavras (UFLA), Lavras, MG, Brazil) and national (National Council for Control of Animal Experimentation (CONCEA)) guidelines for the care and use of laboratory animals.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. AL-SABTI K, METCALFE CD (1995) Fish micronuclei for assessing genotoxicity in water. Mutation Res Genetic Toxicology 343(2):121–135.  https://doi.org/10.1016/0165-1218(95)90078-0 CrossRefGoogle Scholar
  2. ANDRADE LF, CAMPOS JMS, DAVIDE LC (2008) Cytogenetic alterations induced by SPL (spent pot liner) in meristematic cells of plant bioassays. Ecotoxicol Environ Saf 71(3):706–710.  https://doi.org/10.1016/j.ecoenv.2008.02.018 CrossRefGoogle Scholar
  3. ANDRADE LF, DAVIDE LC, GEDRAITE LS (2010) The effect of cyanide compounds, fluorides, aluminum, and inorganic oxides present in spent pot liner on germination and root tip cells of Lactuca sativa. Ecotoxicol Environ Saf 73(4):626–631.  https://doi.org/10.1016/j.ecoenv.2009.12.012 CrossRefGoogle Scholar
  4. ANDRADE-VIEIRA LF, GEDRAITE LS, CAMPOS JMS, DAVIDE LC (2011) Spent Pot Liner (SPL) induced DNA damage and nuclear alterations in root tip cells of Allium cepa as a consequence of programmed cell death. Ecotoxicol Environ Saf 74(4):882–888.  https://doi.org/10.1016/j.ecoenv.2010.12.010 CrossRefGoogle Scholar
  5. ANDRADE-VIEIRA, L.F., DE CAMPOS, J.M.S., AND DAVIDE, L.C., (2012). Effects of Spent Pot Liner on mitotic activity and nuclear DNA content in meristematic cells of Allium cepa.J Environ Manag,107, 140–146, DOI:  https://doi.org/10.1016/j.jenvman.2012.04.008
  6. BERNET D, SCHMIDT H, MEIER W, BURKHARDT-HOLM P, WAHLI T (1999) Histopathology in fish: proposal for a protocol to assess aquatic pollution. J Fish Dis 22(1):25–34.  https://doi.org/10.1046/j.1365-2761.1999.00134.x CrossRefGoogle Scholar
  7. CARRASCO KR, TILBURY KL, MAYERS MS (1990) Assessment of the piscine micronuclei test in situ biological indicator of chemical contaminants effects. Canad J Fish Aquatic Science 47(11):2123–2136.  https://doi.org/10.1139/f90-237 CrossRefGoogle Scholar
  8. CHANDRA S, CHAUHAN LKS, MURTHY RC, SAXENA PN, PANDE PN, GUPTA SK (2005) Comparative biomonitoring of leachates from hazardous solid waste of two industries using Allium test. Sci Total Environ 347(1-3):46–52.  https://doi.org/10.1016/j.scitotenv.2005.01.002 CrossRefGoogle Scholar
  9. COLLINS AR (2004) The comet assay for DNA damage and repair. Principles, applications, and limitation. Rev Mol Biotechnol 26(3):249–261.  https://doi.org/10.1385/MB:26:3:249 CrossRefGoogle Scholar
  10. COLLINS AR, DOBSON VL, DUSINSKÁ M, KENNEDY G, STĔTINA R (1997) The comet assay: what can it really tell us? Mutat Res 375(2):183–193.  https://doi.org/10.1016/S0027-5107(97)00013-4 CrossRefGoogle Scholar
  11. CONOLLY RB, LUTZ WK (2004) Nonmonotonic dose-response relationships: mechanistic basis, kinetic modeling, and implications for risk assessment. Toxicological Sciences 77(1):151–157CrossRefGoogle Scholar
  12. DAVID WM, MITCHELL DL, WALTER RB (2004) DNA repair in hybrid fish of the genus Xiphophorus. Review Comp Biochem Physiol 138:301–309Google Scholar
  13. DOS REIS GB, ANDRADE-VIEIRA LF, DE CAMPOS MORAES I, CÉSAR PHS, MARCUSSI S, DAVIDE LC (2017) Reliability of plant root comet assay in comparison with human leukocyte comet assay for assessment environmental genotoxic agents. Ecotoxicol Environ Saf 142:110–116.  https://doi.org/10.1016/j.ecoenv.2017.04.004 CrossRefGoogle Scholar
  14. FAßBENDER C, BRAUNBECK T (2013) Assessment of genotoxicity in gonads, liver and gills of zebrafish (Danio rerio) by use of the comet assay and micronucleus test after in vivo exposure to methyl methanesulfonate. Bull Environ Contam Toxicol 91(1):89–95.  https://doi.org/10.1007/s00128-013-1007-6 CrossRefGoogle Scholar
  15. Fenech, M. et al. (2000). The HUman MicroNucleous Project—an international collaborative study on the use of micronucleous technique for measuring DNA damage in humans. Mutation Res, Amsterdam 428 (½), 271-283Google Scholar
  16. FRACÁCIO R, VERANI NF, ESPÍNDOLA ELG, ROCHA O, RIGOLIN-SÁ O, ANDRADE CA (2003) Alterations on growth and gill morphology of Danio rerio (Pisces, Ciprinidae) exposed to the toxic sediments. Braz Arch Biol Technol 46(4):685–695.  https://doi.org/10.1590/S1516-89132003000400023 CrossRefGoogle Scholar
  17. FREITAS AS, CUNHA IMF, ANDRADE-VIEIRA LF, TECHIO VH (2016) Effect of SPL (Spent Pot Liner) and its main components on root growth, mitotic activity and phosphorylation of Histone H3 in Lactuca sativa L. Ecotoxicol Environ Saf 124:426–434.  https://doi.org/10.1016/j.ecoenv.2015.11.017 CrossRefGoogle Scholar
  18. JIA X, ZHANG H, LIU X (2011) Low levels of cadmium exposure induce DNA damage and oxidative stress in the liver of Oujiang colored common carp Cyprinus carpio var. color. Fish Physiol Biochem 37(1):97–103.  https://doi.org/10.1007/s10695-010-9416-5 CrossRefGoogle Scholar
  19. KARI G, RODECK U, DICKER AP (2007) Zebrafish: an emerging model system for human disease and drug disco: very. Clinical Pharmacology Therapeutics, Saint Louis 82(1):70–80.  https://doi.org/10.1038/sj.clpt.6100223 CrossRefGoogle Scholar
  20. KARLSSON-NORRGREN, L.; RUNN, P.; HAUX, C. AND FORLIN, L., (1985). Cadmiun-induced changes in gill morphology of zebrafish, Brachydanio rerio (Hamilton-Buchanan), and rainbow trout, Salmo gairdneri Richardson.J Fish Biol,27, 81–95, 1, DOI:  https://doi.org/10.1111/j.1095-8649.1985.tb04011.x
  21. LICHTENFELS AJFC, LORENZI-FILHO G, GUIMARAES ET, MACCHIONE M, SALDIVA PHN (1996) Effects of water pollution on the gill apparatus of fish. J Comp Pathol 115(1):47–60.  https://doi.org/10.1016/S0021-9975(96)80027-2 CrossRefGoogle Scholar
  22. LIESCHKE JG, CURRIE PD (2007) Animal models of human disease: zebrafish swim into view. Nature Revi-Genetics, London 8(5):353–367.  https://doi.org/10.1038/nrg2091 CrossRefGoogle Scholar
  23. LISBONA DF, STEEL KM (2008) Recovery of fluoride values from spent pot-lining: precipitation of an aluminium hydroxyfluoride hydrate product. Sep Purif Technol 61(2):182–192.  https://doi.org/10.1016/j.seppur.2007.10.012 CrossRefGoogle Scholar
  24. LISBONA DF, SOMERFIELD C, STEEL KM (2012) Leaching of spent pot-lining with aluminum anodizing wastewaters: fluoride extraction and thermodynamic modeling of aqueous speciation. Ind Eng Chem Res 51(25):8366–8377.  https://doi.org/10.1021/ie3006353 CrossRefGoogle Scholar
  25. MARCUSSI S, SANTOS PR, MENALDO DL, SILVEIRA LB, SANTOS-FILHO NA, MAZZI MV, DA SILVA SL, STÁBELI RG, ANTUNES LM, SOARES AM (2011) Evaluation of the genotoxicity of Crotalus durissusterrificus snake venom and its isolated toxins on human lymphocytes. Mutat Res 724(1–2):59–63.  https://doi.org/10.1016/j.mrgentox.2011.06.004 CrossRefGoogle Scholar
  26. MARCUSSI S, STÁBELI RG, SANTOS-FILHO NA, MENALDO DL, SILVA PEREIRA LL, ZULIANI JP, CALDERON LA, DA SILVA SL, ANTUNES LM, SOARES AM (2013) Genotoxic effect of Bothrops snake venoms and isolated toxins on human lymphocyte DNA. Toxicon 65:9–14.  https://doi.org/10.1016/j.toxicon.2012.12.020 CrossRefGoogle Scholar
  27. Narwal, SS., Catalán, CAN., Sampietro, DA., Vattuone, MA., Politycka, B., (2008). Plant bioassays, Studium Press, Houston pp1–344Google Scholar
  28. NTUK, U., WHITE, E., TAIT, S., STEEL, K., (2013). Prediction of solubilities of aluminium hydroxyfluoride hydrate recovered from spent pot lining. In: Proceedings of Chemeca 2013: challenging tomorrow. Chemeca 2013: Challenging tomorrow, Brisbane, QLD, Australia, (1–6). 29Google Scholar
  29. OLIVEIRA RC, FANTA E, TURCATTI NM, CARDOSO, R.J. AND CARVALHO, C.S. (1996) Lethal effects of inorganic mercury on cells and tissues of Trichomycterus brasiliensis (Pisces; Siluroidei). Biocell 20(3):171–178Google Scholar
  30. PALMIERI MJ, LUBER J, ANDRADE-VIEIRA LF, DAVIDE LC (2014) Cytotoxic and phytotoxic effects of the main chemical components of spent pot-liner: a comparative approach. Mutat Res Genet Toxicol Environ Mutagen 763:30–35.  https://doi.org/10.1016/j.mrgentox.2013.12.008 CrossRefGoogle Scholar
  31. PALMIERI MJ, ANDRADE-VIEIRA LF, TRENTO MVC, ELEUTÉRIO MWF, LUBER J, DAVIDE LC, MARCUSSI S (2016) Cytogenotoxic effects of Spent Pot Liner (SPL) and its main components on human leukocytes and meristematic cells of Allium cepa. Water Air Soil Pollut 227(5):156–166.  https://doi.org/10.1007/s11270-016-2809-z CrossRefGoogle Scholar
  32. PARAÍBA LC, BOEIRA CR, JONSSON CM, CARRASCO JM (2006) Fator de bioconcentração de poluentes orgânicos de lodos em frutos de laranjeiras. Revista Ecotoxicologia e meio ambiente 16:125–134Google Scholar
  33. R DEVELOPMENT CORE TEAM,2014. R: a language and environment for statistical computing. R Foundation for Statistical ComputingGoogle Scholar
  34. RIXIAN L, HUASHENG H, XINHONG W, Kejian W, CHUNGUANG W (2005) The genotoxic effects of benzo[a]pyrene and methamidophos on black porgy evaluated by comet assay. Chin J Oceanol Limnol 23(4):455–460.  https://doi.org/10.1007/BF02842691 CrossRefGoogle Scholar
  35. VILCHES, M., (2009). Análise genotóxica do Rio Cadeia/RS através do ensaio cometa e teste de micronúcleo e anormalidades nucleares utilizando peixes como bioindicadores. Dissertação (Mestrado em Qualidade Ambiental). Centro Universitário Feevale, Novo Hamburgo, BrasilGoogle Scholar
  36. WONG CKC, YEUNG HY, WOO PS, WONG MH (2001) Specific expression of cytochrome P4501A1 gene in gills, intestines and liver tilapia exposed to coastal sediments. Aquat Toxicol 54(1-2):69–80.  https://doi.org/10.1016/S0166-445X(00)00173-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tássia F. D. Castro
    • 1
  • Isadora M. Paiva
    • 2
  • Aline F. S. Carvalho
    • 1
  • Isadora L. Assis
    • 1
  • Marcel J. Palmieri
    • 3
  • Larissa F. Andrade-Vieira
    • 3
  • Silvana Marcussi
    • 4
  • Luis D. Solis-Murgas
    • 1
  1. 1.Departamento de Medicina VeterináriaUniversidade Federal de LavrasLavrasBrazil
  2. 2.Departamento de Ciências Biológicas, Setor de GenéticaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Departamento de Ciências BiológicasUniversidade Federal de LavrasLavrasBrazil
  4. 4.Departamento de QuímicaUniversidade Federal de LavrasLavrasBrazil

Personalised recommendations