Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 10, pp 10058–10068 | Cite as

Cd and Cu accumulation, translocation and tolerance in Populus alba clone (Villafranca) in autotrophic in vitro screening

  • Morena Marzilli
  • Patrick Di Santo
  • Giuseppe Palumbo
  • Lucia Maiuro
  • Bruno Paura
  • Roberto Tognetti
  • Claudia Cocozza
Research Article

Abstract

The present study investigated accumulation, translocation and tolerance of autotrophic Populus alba clone “Villafranca” in response to excess concentrations of cadmium (Cd) and copper (Cu) provided to the plants. For this purpose, increasing concentrations of Cd (0, 5, 50 and 250 μM) and Cu (0, 5, 50, 250 and 500 μM) were administered to the growth medium in which micropropagated poplar plantlets were exposed to metal treatments for 15 days. Filter bags, instead of the conventional in vitro screening, were applied to improve the experimental design. Results showed that Cd and Cu increased in shoots and roots at increasing metal concentration in the medium. The highest Cd content was found in leaves, while the highest Cu content was found in roots. In “Villafranca”, Cu showed toxic effects on the development of the seedlings, especially at the highest concentrations, reducing plant dry mass. However, the tolerance index (Ti) indicated good tolerance in this clone under exposure to excess metal concentrations, whereas plants had higher translocation factor (Tf). We recommend in vitro selection of tolerant genotypes, aimed at providing early indication on accumulation potentiality and tolerance capability in research on plant sensitivity to excess heavy metal concentrations.

Keywords

Pollution Cadmium Copper Phytoremediation White poplar Micropropagation Autotrophy 

Supplementary material

11356_2018_1299_MOESM1_ESM.docx (47 kb)
Table S1 (DOCX 46 kb).

References

  1. Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M, Zia-Ur-Rehman M, Irshad MK, Bharwana SA (2015) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res Int 22(11):8148–8162.  https://doi.org/10.1007/s11356-015-4496-5 CrossRefGoogle Scholar
  2. Ahsan N, Renaut JJ, Komatsu S (2009) Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics 9(10):2602–2621.  https://doi.org/10.1002/pmic.200800935 CrossRefGoogle Scholar
  3. Ali NA, Ater M, Sunahara GI, Robidoux PY (2004) Phytotoxicity and bioaccumulation of cooper and chromium using barley in spiked artificial and natural forest soils. Ecotoxicol Environ Saf 57(3):363–374.  https://doi.org/10.1016/S0147-6513(03)00074-5 CrossRefGoogle Scholar
  4. Alloway BJ (1995) Heavy metals in soils, 2nd ed. Blackie Academic & Professional, London, ‘Appendix 2’. In: Alloway BJ (ed) p 354.  https://doi.org/10.1007/978-94-011-1344-1
  5. Arduini I, Godbold DL, Onnis A (1995) Influence of copper on root growth and morphology on Pinus pinea L. and Pinus pinaster Ait. seedlings. Tree Physiol 15(6):411–415.  https://doi.org/10.1093/treephys/15.6.411 CrossRefGoogle Scholar
  6. Baker AJM (1981) Accumulators and excluders: strategies in the response of plants to heavy metals. J Plant Nutr 3(1-4):1143–1148.  https://doi.org/10.1080/01904168109362867 CrossRefGoogle Scholar
  7. Baryla A, Carrier P, Franck F, Coulomb C, Sahut C, Havaux M (2001) Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium polluted soil: causes and consequences for photosynthesis and growth. Planta 212(5-6):696–709.  https://doi.org/10.1007/s004250000439 CrossRefGoogle Scholar
  8. Becerril JM, Gonzàlez-Murua C, Muñoz-Rueda A, De Felipe MR (1989) Changes induced by cadmium and lead in gas exchange and water relations of clover and Lucerne. Plant Physiol Biochem 27:913–918Google Scholar
  9. Benavides AM, Alvaro J, Duque M, Duivenvoorden JF, Vasco GA, Callejas R (2005) A first quantitative census of vascular epiphytes in rain forests of Colombian Amazonia. Biodivers Conserv 14(3):739–758.  https://doi.org/10.1007/s10531-004-3920-9 CrossRefGoogle Scholar
  10. Bojarczuk K (2004) Effect of toxic metals on the development of poplar (Populus tremula L. x P. alba L.) cultured in vitro. Pol J Environ Stud 13(4):115–120.  https://doi.org/10.5586/asbp.1999.032 Google Scholar
  11. Borghi M, Tognetti R, Monteforti G, Sebastiani L (2007) Responses of Populus × euramericana (P. deltoides × P. nigra) clone Adda to increasing copper concentrations. Environ Exp Bot 61(1):66–73.  https://doi.org/10.1016/j.envexpbot.2007.03.001 CrossRefGoogle Scholar
  12. Borghi M, Tognetti R, Monteforti G, Sebastiani (2008) Responses of two poplar species (Populus alba and Populus x canadensis) to high copper concentrations. Environ Exp Bot 62:290–299.  https://doi.org/10.1016/j.envexpbot.2007.10.001 CrossRefGoogle Scholar
  13. Castagna A, Di Baccio D, Tognetti R, Ranieri A, Sebastiani L (2013) Differential ozone sensitivity interferes with cadmium stress in poplar clones. Biol Plant 57(313–324):2–324.  https://doi.org/10.1007/s10535-012-0274-0 Google Scholar
  14. CEC, Commission of the European Communities (2006) Adult education: it is never too late to learn Communication from the Commission Brussels: COM 614Google Scholar
  15. Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8(3):279–284.  https://doi.org/10.1016/S0958-1669(97)80004-3 CrossRefGoogle Scholar
  16. Cho-Ruk K, Kurukote J, Supprung P, Vetayasuporn S (2006) Perennial plants in the phytoremediation of lead-contaminated soils. Biotechnology 5(1):1–4.  https://doi.org/10.3923/biotech.2006.1.4 CrossRefGoogle Scholar
  17. Clarkson DT, Lüttge U (1989) Mineral nutrition divalent cations, transport and compartmentation. Prog Bot 51:93–112.  https://doi.org/10.1007/978-3-642-75154-7_7 Google Scholar
  18. Clements S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7(7):309–315.  https://doi.org/10.1016/S1360-1385(02)02295-1 CrossRefGoogle Scholar
  19. Cocozza C, Minnocci A, Tognetti R, Iori V, Zacchini M, Scarascia Mugnozza G (2008) Distribution and concentration of cadmium in root tissue of Populus alba determined by scanning electron microscopy and energy-dispersive x-ray microanalysis. iForest 1(1):96–103.  https://doi.org/10.3832/ifor0458-0010096 CrossRefGoogle Scholar
  20. Cocozza C, Maiuro L, Tognetti R (2011) Mapping cadmium distribution in roots of Salicaceae through scanning electron microscopy with x-ray microanalysis. iForest 4(3):113–120.  https://doi.org/10.3832/ifor0563-004 CrossRefGoogle Scholar
  21. Confalonieri M, Belenghi B, Balestrazzi A, Negri S, Facciotto G, Schenone G, Delledonne M (2000) Transformation of elite white poplar (P. alba) cv ‘Villafranca’ and evaluation of herbicide resistance. Plant Cell Rep 19(10):978–982.  https://doi.org/10.1007/s002990000230 CrossRefGoogle Scholar
  22. Dal Corso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 50(10):1268–1280.  https://doi.org/10.1111/j.1744-7909.2008.00737.x CrossRefGoogle Scholar
  23. Di Baccio D, Tognetti R, Minnocci A, Sebastiani L (2009) Responses of the Populus × euramericana clone I-214 to excess zinc: carbon assimilation, structural modifications, metal distribution and cellular localization. Environ Exp Bot 67(1):153–163.  https://doi.org/10.1016/j.envexpbot.2009.05.014 CrossRefGoogle Scholar
  24. Di Baccio D, Galla G, Bracci T, Andreucci A, Barcaccia G, Tognetti R, Sebastiani L (2011) Transcriptome analyses of Populus × euramericana clone I-214 leaves exposed to excess zinc. Tree Physiol 31:1293–1308CrossRefGoogle Scholar
  25. Di Baccio D, Castagna A, Tognetti R, Ranieri A, Sebastiani L (2014) Early responses to cadmium of two poplar clones that differ in stress tolerance. J Plant Physiol 171(18):1693–1705.  https://doi.org/10.1016/j.jplph.2014.08.007 CrossRefGoogle Scholar
  26. Di Lonardo S, Capuana M, Arnetoli M, Gabbrielli R, Gonnelli C (2011) Exploring the metal phytoremediation potential of three Populus alba L. clones using an in vitro screening. Environ Sci Pollut Res 18(1):82–90.  https://doi.org/10.1007/s11356-010-0354-7 CrossRefGoogle Scholar
  27. Di Santo P, Cocozza C, Tognetti R, Palumbo G, Iorio ED, Paura B (2017) A quick screening to assess the phytoextraction potential of cadmium and copper in Quercus pubescens plantlets. iForest - Biogeosci For 10(1):93–98CrossRefGoogle Scholar
  28. Dos Santos Utmazian MN, Wieshammer G, Vega R, Wenzel WW (2007) Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environ Pollut 148(1):155–165.  https://doi.org/10.1016/j.envpol.2006.10.045 CrossRefGoogle Scholar
  29. Farhat N, Ivanov AG, Krol M, Rabhi M, Smaoui A, Abdelly C, Hüner NPA (2015) Preferential damaging effects of limited magnesium bioavailability on photosystem I in Sulla carnosa plants. Planta 241(5):1189–1206.  https://doi.org/10.1007/s00425-015-2248-x CrossRefGoogle Scholar
  30. Feng J, Shi Q, Wang X, Wei M, Yang F, Xu H (2010) Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Sci Hortic 123(4):521–530.  https://doi.org/10.1016/j.scienta.2009.10.013 CrossRefGoogle Scholar
  31. Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99(3):259–278.  https://doi.org/10.1016/S0168-1656(02)00218-3 CrossRefGoogle Scholar
  32. Fuzhong W, Wanqin Y, Jian Z, Liqiang Z (2010) Cadmium accumulation and growth responses of a poplar (Populus deltoids × Populus nigra) in cadmium contaminated purple soil and alluvial soil. J Hazard Mater 177(1-3):268–273.  https://doi.org/10.1016/j.jhazmat.2009.12.028 CrossRefGoogle Scholar
  33. Golan-Goldhirsh A, Barazani O, Wang Z, Khadka D, Saunders J, Kostiukovsky V, Rowland J (2004) Plant response to heavy metals and organic pollutants in cell culture and at whole plant level. J Soils Sediments 4:133–140.  https://doi.org/10.1007/BF02991058 CrossRefGoogle Scholar
  34. Gomes MP, De Sá TCLL, Marques M, Nogueira MOG, De Castro EM, Soares AM (2011) Ecophysiological and anatomical changes due to uptake and accumulation of heavy metal in Brachiaria decumbens. Sci Agric 68(5):566–573.  https://doi.org/10.1590/S0103-90162011000500009 CrossRefGoogle Scholar
  35. Guo TR, Zhang GP, Zhou MX, Wu FB, Chen JX (2004) Effect of aluminum and cadmium toxicity on growth and antioxidant enzyme activities of two barley genotypes with difference Al tolerance. Plant Soil 258(1):241–248.  https://doi.org/10.1023/B:PLSO.0000016554.87519.d6 CrossRefGoogle Scholar
  36. Harms HH (1992) In-vitro systems for studying phytotoxicity and metabolic fate of pesticides and xenobiotics in plants. Pestic Sci 35(3):277–281.  https://doi.org/10.1002/ps.2780350313 CrossRefGoogle Scholar
  37. Hatch DJ, Jones LHP, Burau RG (1988) The effect of pH on the uptake of cadmium by four plant species grown in flowing solution culture. Plant Soil 105:212–216CrossRefGoogle Scholar
  38. Hodson MJ (2012) Metal toxicity and tolerance in plants. Biochemical. Society 34:28–32Google Scholar
  39. Hossain MA, Hasanuzzaman M, Fujita M (2010) Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol Mol Biol Plants 16(3):259–272.  https://doi.org/10.1007/s12298-010-0028-4 CrossRefGoogle Scholar
  40. Italian Regulation (2006) Norme in materia ambientale, LD 152/2006 In: Gazzetta Ufficiale no. 88/2006, 3/03/2006Google Scholar
  41. Jiali H, Hong L, Jie L, Chaofeng M, Shaojun L, Long Q, Ying G, Xiangning J, Janz D, Polle A, Tyree M, Zhi-Bin L (2013) A transcriptomic network underlies microstructural and physiological responses to cadmium in Populus x canescens. Plant Physiol 162(1):424–439.  https://doi.org/10.1104/pp.113.215681 CrossRefGoogle Scholar
  42. Kabata-Pendias A, Pendias H (1989) Trace elements in soils and plants. Mir Moscow pp 152–186Google Scholar
  43. Kacálková L, Tlustoš P, Száková J (2009) Phytoextraction of cadmium, copper, zinc and mercury by selected plants. Plant Soil Environ 55:295–304 https://www.cabdirect.org/cabdirect/abstract/20093240982 CrossRefGoogle Scholar
  44. Kalve S, Sarangi BK, Pandey RA, Chakrabarti T (2011) Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata: prospective for phytoextraction from contaminated water and soil. Curr Sci 100:888–894 http://scihub22266oqcxt.onion/http://www.jstor.org/stable/24076481 Google Scholar
  45. Khan NA, Samiullah SS, Nazar R (2007) Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J Agron Crop Sci 193(6):435–444.  https://doi.org/10.1111/j.1439-037X.2007.00272.x CrossRefGoogle Scholar
  46. Kong XB (2014) China must protect high-quality arable land. Nature 506(7486):7.  https://doi.org/10.1038/506007a CrossRefGoogle Scholar
  47. Kovacs S, Gaspar L, Cseh E, Kröpfl K, Servari E (2005) Protective effects of phosphonomethyl-sarcosine against the copper and cadmium-induced inhibition of leaf development in poplar. Acta Biol Szeged 49:61–63 http://www2.sci.u-szeged.hu/ABS/ Google Scholar
  48. Liu ZL, He XY, Chen W, Yuan FH, Yan K, Tao DL (2009) Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator Lonicera japonica Thunb. J Hazard Mater 169(1-3):170–175.  https://doi.org/10.1016/j.jhazmat.2009.03.090 CrossRefGoogle Scholar
  49. Lloyd G, McCown BH (1980) Commercially feasible micropropagation of mountain laurel Kalmia latifolia by use of shoot-tip culture. Comb Proc Int Plant Propag Soc 30:421–427Google Scholar
  50. Lone MI, He Z, Stoffella PJ, Yang X (2008) Phytoremediation of heavy metals polluted soils and water: progress and perspectives. J Zhejiang Univ Sci B 9(3):210–220.  https://doi.org/10.1631/jzus.B0710633 CrossRefGoogle Scholar
  51. Lux A, Šottníková A, Opatrná J, Greger M (2004) Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiol Plant 120(4):537–545.  https://doi.org/10.1111/j.0031-9317.2004.0275.x CrossRefGoogle Scholar
  52. Madejón P, Marañón T, Murillo JM, Robinson B (2004) White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests. Environ Pollut 132:145–155.  https://doi.org/10.1016/j.envpol.2004.03.015 CrossRefGoogle Scholar
  53. Mallick S, Sinam G, Mishra RK, Sinha S (2010) Interactive effects of Cr and Fe treatments on plants growth, nutrition and oxidative status in Zea mays L. Ecotoxicol Environ Saf 73(5):987–995.  https://doi.org/10.1016/j.ecoenv.2010.03.004 CrossRefGoogle Scholar
  54. Manciulea A, Ramsey MH (2006) Effect of scale of Cd heterogeneity and timing of exposure on the Cd uptake and shoot biomass, of plants with a contrasting root morphology. Sci Total Environ 367(2-3):958–967.  https://doi.org/10.1016/j.scitotenv.2006.01.015 CrossRefGoogle Scholar
  55. Mazid M, Khan TA, Mohammad F (2011) Role of nitric oxide in regulation of H2H2 mediating tolerance of plants to abiotic stress a synergistic signalling approach. J Stress Physiol Biochem 7:34–74Google Scholar
  56. Melo HC, Castro EM, Soares AM, Melo LA, Alves JD (2007) Anatomical and physiological alterations in Setaria anceps Stapf ex Massey and Paspalum paniculatum L. under water deficit conditions. Hoehnea 34:145–153.  https://doi.org/10.1590/S2236-89062007000200003 CrossRefGoogle Scholar
  57. Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Phys 164(5):601–610.  https://doi.org/10.1016/j.jplph.2006.03.003 CrossRefGoogle Scholar
  58. Moss B (2008) Water pollution by agriculture. Phil Trans R Soc B 363(1491):659–666.  https://doi.org/10.1098/rstb.2007.2176 CrossRefGoogle Scholar
  59. Nazar R, Iqbal N, Masood A, Khan M, Syeed S, Khan NA (2012) Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am J Plant Sci 3(10):1476–1489.  https://doi.org/10.4236/ajps.2012.310178 CrossRefGoogle Scholar
  60. Olaniran AO, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14(5):10197–10228.  https://doi.org/10.3390/ijms140510197 CrossRefGoogle Scholar
  61. Pietrini F, Iannelli MA, Pasqualini S, Massacci A (2003) Interaction of cadmium with glutathione and photodyntesis in developing leaves and chloroplasts of Phragmites australis (Cav) Trin. ex Steudel. Plant Physiol 133(2):829–837.  https://doi.org/10.1104/pp.103.026518 CrossRefGoogle Scholar
  62. Pinto AP, Mota AM, De Varennes A, Pinto FC (2004) Influence of organic matter on the uptake of cadmium zinc copper and iron by sorghum plants. Sci Total Environ 326(1-3):239–247.  https://doi.org/10.1016/j.scitotenv.2004.01.004 CrossRefGoogle Scholar
  63. Przedpełska Wąsowicz E, Polatajko A, Wierzbicka M (2012) The influence of cadmium stress on the content of mineral nutrients and metal-binding proteins in Arabidopsis halleri. Water Air Soil Pollut 223(8):5445–5458.  https://doi.org/10.1007/s11270-012-1292-4 CrossRefGoogle Scholar
  64. Pulford ID, Watson C (2003) Phytoremediation of heavy metal contaminated land by trees a review. Environ Int 29(4):529–540.  https://doi.org/10.1016/S0160-4120(02)00152-6 CrossRefGoogle Scholar
  65. Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley & Sons, Inc Publishing, New York, p 304Google Scholar
  66. Rivetta A, Negrini N, Cocucci M (1997) Involvement on Ca2+ toxicity during the early phases of radish Raphanus sativus L seed germination. Plant Cell Environ 20(5):600–608.  https://doi.org/10.1111/j.1365-3040.1997.00072.x CrossRefGoogle Scholar
  67. Rizzi L, Petruzelli G, Poggio G, Vigna Guidi G (2004) Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization. Chemosphere 57(9):1039–1046.  https://doi.org/10.1016/j.chemosphere.2004.08.048 CrossRefGoogle Scholar
  68. Saier MH, Trevors JT (2010) Phytoremediation. Water Air Soil Pollut 205(S1):61–63.  https://doi.org/10.1007/s11270-008-9673-4 CrossRefGoogle Scholar
  69. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49(1):643–668.  https://doi.org/10.1146/annurev.arplant.49.1.643 CrossRefGoogle Scholar
  70. Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4(2):118–138.  https://doi.org/10.3923/jest.2011.118.138 CrossRefGoogle Scholar
  71. Sheldon AR, Menzies NW (2004) The effect of copper toxicity on the growth and morphology of Rhodes grass (Chloris gayana) in solution culture. SuperSoil 3rd Australian New Zealand Soils Conference, 5–9 December 2004, University of Sydney, AustraliaGoogle Scholar
  72. Shi G, Liu C, Cai Q, Liu Q, Hou C (2010) Cadmium accumulation and tolerance of two safflower cultivars in relation to photosynthesis and antioxidative enzymes. Bull Environ Contam Toxicol 85(3):256–263.  https://doi.org/10.1007/s00128-010-0067-0 CrossRefGoogle Scholar
  73. Singh A, Prasad SM (2011) Reduction of heavy metal load in food chain technology assessment. Rev Environ Sci Biotechnol 10(3):199–214.  https://doi.org/10.1007/s11157-011-9241-z CrossRefGoogle Scholar
  74. Taylor GJ, Foy CD (1985) Mechanisms of aluminum tolerance in Triticum aestivum L (wheat). II. Differential pH induced by winter cultivars in nutrient solutions. Am J Bot 72(5):695–670.  https://doi.org/10.2307/2443681 CrossRefGoogle Scholar
  75. Tognetti R, Cocozza C, Marchetti M (2013) Shaping the multifunctional tree: the use of Salicaceae in environmental restoration. iForest 6(1):37–47.  https://doi.org/10.3832/ifor0920-006 CrossRefGoogle Scholar
  76. Vahter M, Berglund M, Lind B, Jorhem L, Slorach S, Friberg L (1991) Personal monitoring of lead and cadmium exposure a Swedish study with special reference to methodological aspects. Scand J Work Environ Health 17(1):65–74.  https://doi.org/10.5271/sjweh.1732 CrossRefGoogle Scholar
  77. Van Belleghem F, Cuypers A, Semane B, Smeets K, Vangronsveld J, Roland Valcke JH (2007) Subcellular localization of cadmium in roots and leaves of Arabidopsis thaliana. New Phytol 173(3):495–508.  https://doi.org/10.1111/j.1469-8137.2006.01940.x CrossRefGoogle Scholar
  78. Van Nevel L, Mertens J, Oorts K, Verheyen K (2007) Phytoextraction of metals from soils how far from practice? Environ Pollut 150(1):34–40.  https://doi.org/10.1016/j.envpol.2007.05.024 CrossRefGoogle Scholar
  79. Vassilev A, Schwitzguébel JP, Thewys T, Van der Lelie D, Vangronsveld J (2004) The use of plants for remediation of metal contaminated soils. Sci World J 4:9–34.  https://doi.org/10.1100/tsw.2004.2 CrossRefGoogle Scholar
  80. VCI, Copper history/future, Van Commodities Inc. (2011) http://trademetalfutures.com/copperhistory.html
  81. Vithanage M, Dabrowska BB, Mukherjee AB, Sandhi A, Bhattacarya P (2012) Arsenic uptake by plants and possible phytoremediation applications a brief overview. Environ Chem Lett 10(3):217–224.  https://doi.org/10.1007/s10311-011-0349-8 CrossRefGoogle Scholar
  82. Wang M, Zou J, Duan X, Jiang W, Liu D (2007) Cadmium accumulation and its effects on metal uptake in maize Zea mays L. Bioresour Technol 98(1):82–88.  https://doi.org/10.1016/j.biortech.2005.11.028 CrossRefGoogle Scholar
  83. Wilkins DA (1978) The measurement of tolerance to edaphic factors by means of root growth. New Phytol 80(3):623–633.  https://doi.org/10.1111/j.1469-8137.1978.tb01595.x CrossRefGoogle Scholar
  84. World Health Organization WHO (2010) Exposure to cadmium: a major public health concern. WHO Document Production Services Geneva, Switzerland. www.who.int/entity/ipcs/assessment/public_health/cadmium/en/-30k
  85. Wu FB, Zhang GP (2002) Genotypic differences in effect of Cd on growth and mineral concentrations in barley seedling. Bull Environ Contam Toxicol 69(2):219–227.  https://doi.org/10.1007/s00128-002-0050-5 CrossRefGoogle Scholar
  86. Wu F, Zhang G, Dominy P (2003) Four barely genotypes respond differently to cadmium lipid peroxidation and activities of antioxidant capacity. Environ Exp Bot 50(1):67–78.  https://doi.org/10.1016/S0098-8472(02)00113-2 CrossRefGoogle Scholar
  87. Xu Z, Jiang Y, Zhou G (2016) Nitrogen cycles in terrestrial ecosystems climate change impacts and mitigation. Environ Rev 24(2):132–143.  https://doi.org/10.1139/er-2015-0066 CrossRefGoogle Scholar
  88. Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368(2-3):456–464.  https://doi.org/10.1016/j.scitotenv.2006.01.016 CrossRefGoogle Scholar
  89. Zacchini M, Pietrini F, Mugnozza GS, Iori V, Pietrosanti L, Massacci A (2009) Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut 197(1-4):23–34.  https://doi.org/10.1007/s11270-008-9788-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Morena Marzilli
    • 1
  • Patrick Di Santo
    • 1
  • Giuseppe Palumbo
    • 1
  • Lucia Maiuro
    • 1
  • Bruno Paura
    • 1
  • Roberto Tognetti
    • 1
  • Claudia Cocozza
    • 2
  1. 1.Dipartimento Agricoltura, Ambiente e AlimentiUniversità degli Studi del MoliseCampobassoItaly
  2. 2.Consiglio Nazionale delle Ricerche (CNR)Istituto per la Protezione Sostenibile delle Piante (IPSP)Sesto FiorentinoItaly

Personalised recommendations