Environmental Science and Pollution Research

, Volume 25, Issue 10, pp 10039–10048 | Cite as

Characterization and cancer risk assessment of VOCs in home and school environments in gran La Plata, Argentina

  • Jorge Esteban Colman Lerner
  • Maria de los Angeles Gutierrez
  • Daniela Mellado
  • Daniela Giuliani
  • Laura Massolo
  • Erica Yanina Sanchez
  • Andres Porta
Research Article


Three areas are highlighted in Gran La Plata, Argentina: industrial, urban, and residential. In this work, the levels of volatile organic compounds (VOCs) in indoor air of homes and schools in those areas were analyzed, through the use of passive monitors. The study period is between 2007 and 2010. Higher levels of VOCs were found in homes and schools in the industrial zone, higher than the levels corresponding to urban and residential. Taking into account the relationship between indoor and outdoor levels of VOCs, they have ratios (I/O) between 1.5 and 10 are evidenced contributions of emission sources of VOCs both indoor and outdoor. Complementarily, we estimated the life time cancer risk (LCR) for benzene, styrene, trichloroethylene, and tetrachloroethylene in children who spend their time mostly in such indoor environments. The results show high LCR values for benzene, which exceed acceptable values for the US EPA.


VOCs LCR Health risk Indoor 



The authors gratefully acknowledge the support of the Scientific and Technical Research Council (CONICET), of the Commission for Scientific Research of the Buenos Aires Province (CIC-PBA) and the National University of La Plata (UNLP).


  1. Adgate JL, Church TM, Ryan AD, Ramachandran G, Fredrickson AL, Stock TH, Morandi MT, Sexton K (2004) Outdoor, indoor, and personal exposure to VOCs in children. Environ Health Perspect 112(14):1386–1392. CrossRefGoogle Scholar
  2. ATSDR (2004) Guidance manual for the assessment of joint toxic action of chemical mixtures. Agency for Toxic Substances and Disease Registry Division of Toxicology, U.S. Department of Health and Human Services Public Health Service. May 2004Google Scholar
  3. Begerow J, Jermann E, Keles T, Dunemann L (1999) Performance of two different types of passive samplers for the GC/ECD-FID determination of environmental VOC levels in air. Anal Chem 363(4):399–403. CrossRefGoogle Scholar
  4. Bluyssen PM, De Oliveira FE, Groes L, Clausen G, Fanger PO, Valbjørn O, Bernhard CA, Roulet CA (1996) European indoor air quality audit project in 56 office buildings. Indoor Air 6(4):221–238. CrossRefGoogle Scholar
  5. Caro J, Gallego M (2009) Environmental and biological monitoring of volatile organic compounds in the workplace. Chemosphere 77(3):426–433. CrossRefGoogle Scholar
  6. Castro M (1998) Control of breathing. In: Berne RM, Levy MN (eds) Physiology, 4th edn. Mosby, St. LouisGoogle Scholar
  7. Colman Lerner JE, Sanchéz EY, Porta AA (2012a) VOCs and particulate matter in occupational environments. Characterization and health risk assessment. ISBN 978-3-659-17151-2, LAP Lambert Academic Publishing GmbH & CO. KG, Saarbruken, Germany, 65 ppGoogle Scholar
  8. Colman Lerner JE, Kohajda T, Aguilar ME, Massolo LA, Sánchez EY, Porta AA, Opitz P, Wichmann G, Herbarth O, Mueller A (2014) Improvement of health risk factors after reduction of VOC concentrations in industrial and urban areas. Environ Sci Pollut Res 21(16):9676–9688CrossRefGoogle Scholar
  9. Elliott L, Longnecker MP, Kissling GE, London SJ (2006) Volatile organic compounds and pulmonary function in the Third National Health and Nutrition Examination Survey, 1988–1994. Environ Health Perspect 114(8):1210–1214. CrossRefGoogle Scholar
  10. Gauderman WJ, Gilliland GF, Vora H, Avol E, Stram D, McConnell R, Thomas D, Lurmann F, Margolis HG, Rappaport EB, Berhane K, Peters JM (2002) Association between air pollution and lung function growth in southern California children: results from a second cohort. Am J Respir Crit Care Med 166(1):76–84. CrossRefGoogle Scholar
  11. Guo H, Lee SC, Chan LY, Li WM (2004) Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ Res 94(1):57–66. CrossRefGoogle Scholar
  12. Hoddinott KB, Lee AP (2000) The use of environmental risk assessment methodologies for an indoor air quality investigation. Chemosphere 41(1-2):77–84. CrossRefGoogle Scholar
  13. IARC (1987) Overall evaluations of carcinogenicity: an updating of IARC monographs volumes 1 to 42. IARC Monogr Eval Carcinog Risks Hum Suppl, 7: Lyon, FranceGoogle Scholar
  14. IARC (1995) IARC monographs on the evaluation of carcinogenic risks to humans: dry cleaning, some chlorinated solvents and other industrial chemicals, Vol. 63, LyonGoogle Scholar
  15. IARC (2002) IARC monographs on the evaluation of carcinogenic risks to humans volume 82, Some traditional herbal medicines, some mycotoxins, naphthalene and styrene, Vol. 82, LyonGoogle Scholar
  16. IARC (World Health Organization, International Agency for Research on Cancer) (2012) IARC monographs on the evaluation of carcinogenic risks to human a review of human carcinogens: chemical agents and related occupations, Vol. 100F Lyon, FranceGoogle Scholar
  17. INDEC (National Institute of Statistic and Cense) (2011) Censo Nacional de Población, Hogares y Viviendas 2010.
  18. IPCS (International Programme on Chemical Safety) (2000) Human exposure assessment. World Health Organisation, GenevaGoogle Scholar
  19. Jia C, Betterman S, Godwin C (2008) VOCs in industrial, urban and suburban neighborhoods, part 1: indoor and outdoor concentrations, variation, and risk drivers. Atmos Environ 42:2083–2100CrossRefGoogle Scholar
  20. Jones AP (1999) Indoor air quality and health. Atmos Environ 33(28):4535–4564. CrossRefGoogle Scholar
  21. Kalaiarasan M, Balasubramanian R, Cheong KWD, Tham KW (2009) Traffic-generated airborne particles in naturally ventilated multi-storey residential buildings of Singapore: vertical distribution and potential health risks. Build Environ 44(7):1493–1500. CrossRefGoogle Scholar
  22. Khare M (2012) Air pollution–monitoring, modelling and health. Edited by Mukesh Khare. Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia. ISBN 978-953-51-0424-7. 396 pp
  23. Kot-Wasik A, Zabiegała B, Urbanowicz M, Dominiak E, Wasik A, Namiesnik J (2007) Review: advances in passive sampling in environmental studies. Anal Chim Acta 602(2):141–163. CrossRefGoogle Scholar
  24. Leikauf GD (2002) Hazardous air pollutants and asthma. Environ Health Perspect 110(S4):505–526. CrossRefGoogle Scholar
  25. Massolo L, Rehwagen M, Porta A, Ronco A, Herbarth O, Mueller A (2010) Indoor–outdoor distribution and risk assessment of volatile organic compounds in the atmosphere of industrial and urban areas. Environ Toxicol 25(4):339–349. CrossRefGoogle Scholar
  26. Meek ME, Boobis AR, Crofton KM, Heinemeyer G, Van Raaij M, Vickers C (2011) Risk assessment of combined exposure to multiple chemicals: a WHO/IPCS framework. Regul Toxicol Pharmacol 60(2011):S1–S14Google Scholar
  27. Min Kin Y (2001) Concentrations and sources of VOCs in urban domestic and public microenvironments. Environ Sci Technol. 35:997–1004CrossRefGoogle Scholar
  28. Muller E, Diab RD, Binedell M, Hounsome R (2003) Health risk assessment of kerosene usage in an informal settlement in Durban, South Africa. Atmos Environ 37(15):2015–2022. CrossRefGoogle Scholar
  29. Müller A, Wichmann G, Massolo L, Porta A, Schlink U, Ronco A, Herbarth O (2009) Risk assessment of airborne particles and volatile organic compounds from industrial areas. Review article (invitation) for the publication “industrial pollution including oil spills”. Harry Newbury and William De Lorne, editors, 101-144. Novapublishers Ed., New York. 2009. ISBN: 978-1-60456-917-9Google Scholar
  30. Namieśnik J, Zabiegała B, Kot-Wasik A, Partyka M, Wasik A (2005) Passive sampling and/or extraction techniques in environmental analysis: a review. Anal Bioanal Chem 381:279–301CrossRefGoogle Scholar
  31. NRC (1989) Mixtures. In: Drinking water and health. Vol. 9. National Academy of Sciences, National Research Council, Safe Drinking Water Committee. Washington, DC: National Academy Press, Chap. 6. Volatile Organic Compounds (VOCs): Risk Assessment of Mixtures of Potentially Carcinogenic ChemicalsGoogle Scholar
  32. Ohura T, Amagai T, Fusaya M (2006) Regional assessment of ambient volatile organic compounds in an industrial harbor area, Shizuoka, Japan. Atmos Environ 40:238–248CrossRefGoogle Scholar
  33. OPS (2007) Desarrollo sostenible y salud ambiental. En: Salud en las Américas 2007. Capítulo 3. Organización Panamericana de la Salud.
  34. Pankow JF, Luo W, Bender DA, Isabelle LM, Hollingswortha JS, Chen C, Asher WE, Zogorski JS (2003) Concentrations and co-occurrence correlations of 88 volatile organic compounds (VOCs) in the ambient air of 13 semi-rural to urban locations in the United States. Atmos Environ 37(36):5023–5046. CrossRefGoogle Scholar
  35. Payne-Sturges DC, Burke T, Breysse P, Diener-West M, Buckley TJ (2003) Personal exposure meets risk assessment: a comparison of measured and modeled exposures and risks in an urban community. Environ Health Perspect 112(5):589–598CrossRefGoogle Scholar
  36. Ratto G, Videla F, Maronna R, Flores A, De Pablo F (2010) Air pollutants transport analysis based on hourly winds in the city of La Plata and surroundings, Argentina. Water Air Soil Pollut 208:243–257CrossRefGoogle Scholar
  37. Ratto G, Maronna R, Repossi P, Videla F, Nico A, Almandos J (2012) Analysis of winds affecting air pollutants transport at La Plata. Argent Atmos and Clim Sci 2:60–75Google Scholar
  38. Salthammer T (ed) (1999) Organic indoor air pollutants. Wiley-VCH, WeinheimGoogle Scholar
  39. Sarigiannis D (2011) Exposure to major volatile organic compounds and carbonyls in European indoor environments and associated health risk. Environ Int 37(2011):743–765. CrossRefGoogle Scholar
  40. Schlink U, Rehwagen M, Damm M, Richter M, Borte M, Herbarth O (2004) Seasonal cycle of indoor-VOCs: comparison of apartments and cities. Atmos Environ 38(8):1181–1190. CrossRefGoogle Scholar
  41. Sokal RR and Rohif FI (1969) Biometry: the principles and practice of statistics in biological research. In: Freeman WH San Francisco, p 776 Department of Ecology and Evolution, State University of New York, Stony BrookGoogle Scholar
  42. Son B, Breysse P, Yang W (2003) Volatile organic compounds concentration in residential indoor and outdoor and its personal exposure in Korea. Environ Int 29:79–85CrossRefGoogle Scholar
  43. Srivastava PK, Pandit GG, Sharma S, Mohan Rao AM (2000) Volatile organic compounds in indoor environments in Mumbai, India. Sci Total Environ 255(1-3):161–168. CrossRefGoogle Scholar
  44. Tanaka PL, Oldfield S, Neece JD, Mullins CB, Allen DT (2000) Anthropogenic sources of chlorine and ozone formation in urban atmospheres. Environ Sci Technol 34(21):4470–4473CrossRefGoogle Scholar
  45. USEPA (1998) Integrated risk information system—benzene. URL:
  46. USEPA (2000) Supplementary guidance for conducting health risk assessment of chemical mixtures. Washington, DC: U.S. Environmental Protection Agency, Risk Assessment Forum. EPA/630R-00/002.
  47. Wang S, Ang HM, Tade MO (2007) Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art. Environ Int 33(5):694–705. CrossRefGoogle Scholar
  48. Weisel CP (2002) Assessing exposure to air toxics relative to asthma. Environ Health Perspect 110(S4):527–537. CrossRefGoogle Scholar
  49. WHO (2006a) Guías de calidad del aire de la OMS relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre. Actualización mundial 2005. WHO/SDE/PHE/OEH/06.02. Organización Mundial de la Salud, 2006.
  50. WHO (2006b) Environmental health criteria 237. Principles for evaluating health risks in children associated with exposure to chemicals. Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organization and the World Health Organization., GenevaGoogle Scholar
  51. WHO (2009) Environmental health criteria 239. Principles for modelling dose–response for the risk assessment of chemicals. Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organization and the World Health OrganizationGoogle Scholar
  52. WHO Regional Office for Europe (2010) Environment and health risks: a review of the influence and effects of social inequalities. World Health Organization.
  53. Wichmann FA, Müller A, Busi LE, Cianni N, Massolo L, Porta A, Schlink U, Sly PD (2009) Increased asthma and respiratory symptoms in children exposed to petrochemical pollution. J Allergy Clin Immunol 12(3):632–638CrossRefGoogle Scholar
  54. Wilkins K (2002) Microbial VOC (MVOC) in buildings, their properties and potential use. Proceedings of the 9th international conference on indoor air quality and climate, Monterey, CA, USA, p 431Google Scholar
  55. Wolkoff P (1995) Indoor Air Suppl 3:9Google Scholar
  56. Yimrungruang D, Cheevaporn V, Boonphakdee T, Watchalayann P (2008) Characterization and health risk assessment of volatile organic compounds in gas service station workers. Environ Asia 2:21–29Google Scholar
  57. Zar JH (1998) Biostatistical Analysis (4th ed). Medicine and Health Science BooksGoogle Scholar
  58. Zhou J (2011) Health risk assessment of personal inhalation exposure to volatile organic compounds in Tianjin, China. Sci Total Environ 409(3):452–459. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jorge Esteban Colman Lerner
    • 1
  • Maria de los Angeles Gutierrez
    • 2
  • Daniela Mellado
    • 2
  • Daniela Giuliani
    • 2
  • Laura Massolo
    • 2
  • Erica Yanina Sanchez
    • 2
  • Andres Porta
    • 2
    • 3
  1. 1.CINDECA, Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr. Jorge J. Ronco” CONICET CCT La PlataUNLPLa PlataArgentina
  2. 2.CIMA, Centro de Investigaciones del Medio Ambiente, CONICET CCT La PlataUniversidad Nacional de La PlataLa PlataArgentina
  3. 3.Química Analítica Aplicada, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations