Feet in danger: short exposure to contaminated soil causing health damage—an experimental study

  • Flavio Manoel Rodrigues da Silva Júnior
  • Edlaine Acosta Pinto
  • Tatiane Britto da Silveira
  • Edariane Menestrino Garcia
  • Adriane Maria Netto de Oliveira
  • Ana Luíza Muccillo-Baisch
Research Article
  • 45 Downloads

Abstract

In this study, hematological and behavioral changes in Wistar rats exposed to soil collected from urban areas next to an industrial complex were investigated. Animals were exposed to soil samples placed at the bottom of cages for 4 days. After this period, behavioral parameters were measured by the open field test and the elevated plus-maze. Blood was collected to measure hematological parameters. The soil from the vicinity of the oil refining industry caused changes in hematological parameters and altered behavioral parameters in both tests. The soil from the vicinity of the petroleum refining industry and fertilizer industries increased the density of white blood cells and decreased exploratory activity in the exposed animals. The results demonstrate that contact with contaminated soils, even for short periods, can cause physiological damage in organisms and that special attention should be given to people who live under constant exposure to these soils.

Keywords

Contaminated soils Open field Elevated plus-maze Hematology 

Notes

Compliance with ethical standards

All the animal experiments carried out followed the Brazilian standards dictated by the Brazilian College of Animal Experimentation (COBEA, 1991) and were approved by the Ethics Committee of the Health Area Research/FURG (No. 53/2008).

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Abrahams PW (2002) Soils: their implications to human health. Sci Total Environ 291(1-3):1–32.  https://doi.org/10.1016/S0048-9697(01)01102-0CrossRefGoogle Scholar
  2. Archer J (1973) Test for emotionality in rats and mice: a review. Anim Behav 21(2):205–235.  https://doi.org/10.1016/S0003-3472(73)80065-XCrossRefGoogle Scholar
  3. Bolton JL, Huff NC, Smith SH, Mason SN, Foster WM, Auten RL, Bilbo SD (2013) Maternal stress and effects of prenatal air pollution on offspring mental health outcomes in mice. Environ Health Perspect 121(9):1075–1082.  https://doi.org/10.1289/ehp.1306560Google Scholar
  4. Budinsky RA, Rowlands JC, Casteel S, Fent G, Cushing CA, Newsted J, Giesy JP, Ruby MV, Aylward LL (2008) A pilot study of oral 97 bioavailability of dioxins and furans from contaminated soils: impact of differential hepatic enzyme activity and species differences. Chemosphere 70(10):1774–1786.  https://doi.org/10.1016/j.chemosphere.2007.08.035CrossRefGoogle Scholar
  5. Chasin AAN, Pedroso MFM (2003) O estudo da Toxicologia. (cap. 1). In: Azevedo FA, Chasin AAM (eds) As Bases Toxicológicas da Ecotoxicologia. RIMA, São PauloGoogle Scholar
  6. COBEA (Colégio Brasileiro de Experimentação Animal) 1991 Os princípios éticos da experimentação animal. São PauloGoogle Scholar
  7. Costa MAG, Costa EC 2004 Poluição Ambiental: Herança para gerações futuras. Santa Maria: ORIUM, 256ppGoogle Scholar
  8. Da Silva-Júnior FMR, Vargas VMF (2007) Avaliação de áreas sob a influência de uma termelétrica a carvão através de ensaio de genotoxicidade. J Braz Soc Ecotoxicol 2(2):1–3CrossRefGoogle Scholar
  9. Da Silva-Junior FMR, Vargas VMF (2009) Using the Salmonella assay to delineate the dispersion routes of mutagenic compounds from coal wastes in contaminated soil. Mutat Res 673(2):116–123.  https://doi.org/10.1016/j.mrgentox.2008.12.005CrossRefGoogle Scholar
  10. Da Silva Júnior FMR, Muccillo-Baisch AL (2013) Alterations in some renal parameters of rats induced by aqueous soil extracts. Toxicol Environ Chem 95(6):1030–1036.  https://doi.org/10.1080/02772248.2013.839793CrossRefGoogle Scholar
  11. Da Silva Júnior FMR, Monarca R, Dias D, Ramalhinho MG, Mathias ML, Muccillo-Baisch AL (2012) Physiological damage in Algerian mouse Mus spretus (Rodentia, Muridae) exposed to crude oil. J BioSci Biotechnol 1(2):125–133Google Scholar
  12. Da Silva Júnior FMR, Silva PF, Garcia EM, Klein RD, Peraza-Cardoso G, Baisch PR, Muccillo-Baisch AL (2013) Toxic effects of the ingestion of water-soluble elements found in soil under the atmospheric influence of an industrial complex. Environ Geochem Health 35(3):317–331.  https://doi.org/10.1007/s10653-012-9496-5CrossRefGoogle Scholar
  13. Da Silva Júnior FMR, Garcia EM, Muccillo-Baisch AL (2014) Acute toxicity of soil samples under the atmospheric influence of an industrial complex using Swiss mice. Ecotoxicol Environ Contam 9(1):29–31.  https://doi.org/10.5132/eec.2014.01.004Google Scholar
  14. Freeman GB, Dill JA, Johnson JD, Kurtz PJ, Parham F, Matthews HB (1996) Comparative absorption of lead from contaminated soil and lead salts by weanling Fischer 344 rats. Fundam Appl Toxicol 33(1):109–119.  https://doi.org/10.1006/faat.1996.0148CrossRefGoogle Scholar
  15. Garcia FAP, Mirlean N, Baisch PR (2010) Marcadores metálicos como avaliação do impacto crônico de emissões petroquímicas em zona urbana. Química Nova 33(3):716–720.  https://doi.org/10.1590/S0100-40422010000300040CrossRefGoogle Scholar
  16. Garcia MTA, Duenas AH, Pampliega JP (2013) Hematological effects of arsenic in rats after subchronical exposure during pregnancy and lactation: the protective role of antioxidants. Exp Toxicol Pathol 65(5):609–614.  https://doi.org/10.1016/j.etp.2012.06.004CrossRefGoogle Scholar
  17. Garcia EM, da Silva Junior FMR, Soares MCF, Muccillo-Baisch AL (2015) Developmental effects of parental exposure to soil contaminated with urban metals. Sci Total Environ 520:206–212.  https://doi.org/10.1016/j.scitotenv.2015.02.088CrossRefGoogle Scholar
  18. Garcia EM, da Silva Junior FMR, Muccillo-Baisch AL (2016) Mutagenic effect of contaminated soil on the offspring of exposed rats. Acta Sci Health Sci 38(1):19CrossRefGoogle Scholar
  19. Garcia EM, da Silva Junior FMR, Tavella RA, Cruz CG, Baisch PRM, Muccillo-Baisch AL (2017) Genotoxicity in the offspring of rats exposed to contaminated and acidified experimentally soils. Water Air Soil Pollut 228(7):254.  https://doi.org/10.1007/s11270-017-3440-3CrossRefGoogle Scholar
  20. Gilmore E (2001) A critique of soil contamination and remediation: the dimensions of the problem and the implications for sustainable development. Bull Sci Technol Soc 21(5):394–400.  https://doi.org/10.1177/027046760102100508CrossRefGoogle Scholar
  21. Halatek T, Lutz P, Stetkiewicz J, Krajnow A, Wieczorek E, Swiercz R, Szymczak M, Wasowicz W (2013) Comparison of neurobehavioral and biochemical effects in rats exposed to dusts from copper smelter plant at different locations. J Environ Sci Health A 48(9):1000–1011.  https://doi.org/10.1080/10934529.2013.773198CrossRefGoogle Scholar
  22. Imsilp K, Schaeffer DJ, Hansen LG (2005) PCB disposition and different biological effects in rats following direct soil exposure vs. PCBs off-gassed from the soil. Toxicol Environ Chem 87(3):267–285.  https://doi.org/10.1080/02772240400026765CrossRefGoogle Scholar
  23. Jadhav SH, Sarkar SN, Patil RD, Tripathi HC (2007) Effects of subchronic exposure via drinking water to a mixture of eight water-contaminating metals: a biochemical and histopathological study in male rats. Arch Environ Contam Toxicol 53(4):667–677.  https://doi.org/10.1007/s00244-007-0031-0CrossRefGoogle Scholar
  24. Kadry AM, Skowronski GA, Turkall RM, Abdel-Rahman MS (1995) Comparison between oral and dermal bioavailability of soil adsorbed phenathrene in female rats. Toxicol Lett 78(2):153–163.  https://doi.org/10.1016/0378-4274(95)03250-OCrossRefGoogle Scholar
  25. Marques CC, Gabriel SI, Pinheiro T, Viegas-Crespo AM, Mathias ML, Bebianno MJ (2008) Metallothionein levels in Algerian mice (Mus spretus) exposed to elemental pollution: an ecophysiological approach. Chemosphere 71(7):1340–1347.  https://doi.org/10.1016/j.chemosphere.2007.11.024CrossRefGoogle Scholar
  26. Martinez CS, Alterman CD, Peçanha FM, Vassallo DV, Mello-Carpes PB, Miguel M, Wiggers GA (2017) Aluminum exposure at human dietary levels for 60 days reaches a threshold sufficient to promote memory impairment in rats. Neurotox Res 31(1):20–30.  https://doi.org/10.1007/s12640-016-9656-yCrossRefGoogle Scholar
  27. Mirlean N, Baisch P, Machado I, Shumilin E (2008) Mercury contamination of soil as the result of long-term phosphate fertilizer production. Bull Environ Contam Toxicol 81(3):305–308.  https://doi.org/10.1007/s00128-008-9480-zCrossRefGoogle Scholar
  28. Mirlean N, Baisch P, Medeanic S (2009) Copper bioavailability and fractionation in copper-contaminated sandy soils in the wet subtropics (southern Brazil). Bull Environ Contam Toxicol 82(3):373–377.  https://doi.org/10.1007/s00128-008-9620-5CrossRefGoogle Scholar
  29. Muccillo-Baisch AL, Mirlean N, Carrazzoni D, Soares MCF, Goulart GP, Baisch P (2012) Health effects of ingestion of mercury-polluted urban soil: an animal experiment. Environ Geochem Health 34(1):43–53.  https://doi.org/10.1007/s10653-011-9389-zCrossRefGoogle Scholar
  30. Oszlánczi G, Vezér T, Sárközi L, Horváth E, Kónya Z, Papp A (2010) Functional neurotoxicity of Mn-containing nanoparticles in rats. Ecotoxicol Environ Saf 73(8):2004–2009.  https://doi.org/10.1016/j.ecoenv.2010.09.002CrossRefGoogle Scholar
  31. Rodríguez VM, Jiménez-Capdeville ME, Giordano M (2003) The effects of arsenic exposure on the nervous system. Toxicol Lett 145(1):1–18.  https://doi.org/10.1016/S0378-4274(03)00262-5CrossRefGoogle Scholar
  32. Roos PH, Tschirbs S, Pfeifer F, Welge P, Hack A, Wilhelm M, Bolt M (2004) Risk potentials for humans of original and remediated PAH-contaminated soils: application of biomarkers of effect. Toxicology 205(3):181–194.  https://doi.org/10.1016/j.tox.2004.06.050CrossRefGoogle Scholar
  33. Schilderman PAEL, Moonen EJC, Kempkers P, Kleinjans JCS (1997) Bioavailability of soil adsorbed cadmium in orally exposed male rats. Environ Health Perspect 105(2):234–238.  https://doi.org/10.1289/ehp.97105234CrossRefGoogle Scholar
  34. Schmitt U, Hiemke C (1998) Combination of open field and elevated plus-maze: a suitable teste battery to asses strain as well as treatment differences in rat behavior. Prog Neuro-Psychopharmacol Biol Psychiatry 22(7):1197–1215.  https://doi.org/10.1016/S0278-5846(98)00051-7CrossRefGoogle Scholar
  35. Schnoor JL (1996) Environmental modeling: fate and transport of in water, air and soil. Wiley, New YorkGoogle Scholar
  36. Siqueira JO, Moreira FMS, Grisi BM, Hungria M, Araújo RS 1994 Microrganismos e processos biológicos do solo: Perspectiva ambiental. Brasília. EMBRAPA, 142ppGoogle Scholar
  37. Stenberg B (1999) Monitoring soil quality of arable land: microbiological indicator. Soil Plants Sci 49:263–272Google Scholar
  38. U.S.E.P.A (1996) Exposure factors handbook. U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  39. Van De Waile TR, Verstraete W, Siciliano SD (2004) Polycyclic aromatic hydrocarbon release from a soil matrix in the in vitro gastrointestinal tract. J Environ Qual 33:1343–1353CrossRefGoogle Scholar
  40. Watanabe T, Hirayama T (2001) Genotoxicity of soil. J Health Sci 47(5):433–438.  https://doi.org/10.1248/jhs.47.433CrossRefGoogle Scholar
  41. Wittisiepe J, Erlenkämper B, Welge P, Hack A, Wilhelm M (2007) Bioavailability of PCDD/F from contaminated soil in young Goettingen minipigs. Chemosphere 67:355–364CrossRefGoogle Scholar
  42. Yagminas AP, Franklin CA, Villeneuve DC, Gilman AP, Little PB, Valli VEO (1990) Suchronic oral toxicity of triethyl lead in the male weanling rat. Clinical biochemical, hematological, and histopathological effects. Fundam Appl Toxicol 15(3):580–596.  https://doi.org/10.1016/0272-0590(90)90043-JCrossRefGoogle Scholar
  43. Yang, D., Yang, X., Deng, F., & Guo, X. 2017. Ambient air pollution and biomarkers of health effect. In Ambient air pollution and health impact in China. Springer, Singapore, pp. 59–102Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Flavio Manoel Rodrigues da Silva Júnior
    • 1
    • 2
  • Edlaine Acosta Pinto
    • 1
    • 2
  • Tatiane Britto da Silveira
    • 1
    • 2
  • Edariane Menestrino Garcia
    • 1
  • Adriane Maria Netto de Oliveira
    • 2
  • Ana Luíza Muccillo-Baisch
    • 1
    • 2
  1. 1.Laboratório de Ensaios Farmacológicos e Toxicológicos - LEFT, Instituto de Ciências BiológicasUniversidade Federal do Rio Grande do Sul – FURGRio GrandeBrazil
  2. 2.Programa de Pós Graduação em Ciências da SaúdeUniversidade Federal do Rio Grande (FURG)Rio GrandeBrazil

Personalised recommendations