Environmental Science and Pollution Research

, Volume 25, Issue 11, pp 10555–10566 | Cite as

High efficacy of (Z)-γ-bisabolene from the essential oil of Galinsoga parviflora (Asteraceae) as larvicide and oviposition deterrent against six mosquito vectors

  • Marimuthu Govindarajan
  • Baskaralingam Vaseeharan
  • Naiyf S. Alharbi
  • Shine Kadaikunnan
  • Jamal M. Khaled
  • Mohammed N. Al-anbr
  • Sami A. Alyahya
  • Filippo Maggi
  • Giovanni Benelli
Plant-borne compounds and nanoparticles: challenges for medicine, parasitology and entomology

Abstract

The eco-friendly management of mosquitoes with novel and effective larvicides and oviposition deterrents is a crucial challenge to prevent outbreaks of mosquito-borne diseases. However, most of the herbal formulations tested in these years showed LC50 values higher of 40 ppm, and significant oviposition deterrent activity only when tested at relatively higher doses (> 50 μg/ml). Herein, we studied the chemical composition of the Galinsoga parviflora essential oil (EO). This plant is an annual herb native to South America naturalized all over the world. We tested the EO larvicidal and oviposition deterrent action on 6 mosquito species. Totally 37 compounds were identified in the EO of G. parviflora by GC and GC-MS analyses. The major constituent was (Z)-γ-bisabolene (38.9%). The G. parviflora EO and (Z)-γ-bisabolene showed acute toxicity on An. stephensi (LC50 = 31.04 and 2.04 μg/ml, respectively), Ae. aegypti (LC50 = 34.22 and 2.26 μg/ml, respectively), Cx. quinquefasciatus (LC50 = 37.10 and 2.47 μg/ml, respectively), An. subpictus (LC50 = 40.97 and 4.09 μg/ml, respectively), Ae. albopictus (LC50 = 45.55 and 4.50 μg/ml, respectively) and Cx. tritaeniorhynchus (LC50 = 49.56 and 4.87 μg/ml, respectively) larvae. Furthermore, the oviposition deterrent potential of the G. parviflora EO and (Z)-γ-bisabolene was studied on six mosquito vectors, showing that 25 μg/ml of (Z)-γ-bisabolene led to an Oviposition Activity Index lower of − 0.79 in all tested mosquito vectors. Overall, all larvicidal LC50 values estimated for (Z)-γ-bisabolene were lower than 5 μg/ml. This result far encompasses current evidences of toxicity reported for the large majority of botanical products currently tested against mosquito young instars, allowing us to propose this compound as an highly effective mosquito larvicide and oviposition deterrent.

Keywords

Culicidae Dengue Japanese encephalitis Malaria Vector control Zika virus (Z)-γ-bisabolene 

Notes

Acknowledgements

The authors are grateful to the Professor and Head of the Department of Zoology, Annamalai University for laboratory provisions granted. The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no. RG-1438-091.

References

  1. Adams RP (2007) 4th Ed. Carol stream, Illinois: allured publishing corporation; identification of essential oil components by gas chromatography/mass spectroscopyGoogle Scholar
  2. Ali A, Tabanca N, Demirci B, Blythe EK, Baser KHC, Khan IA (2015) Chemical composition and biological activity of essential oils from four Nepeta species and hybrids against Aedes aegypti (L.) (Diptera: Culicidae). Rec Nat Prod 10:137–147Google Scholar
  3. Amer A, Mehlhorn H (2006a) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99: 478–490.CrossRefGoogle Scholar
  4. Amer A, Mehlhorn H (2006b) The sensilla of Aedes and Anopheles mosquitoes and their importance in repellency. Parasitol Res 99: 491–499.CrossRefGoogle Scholar
  5. Amer A, Mehlhorn H (2006c) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472.CrossRefGoogle Scholar
  6. Amer A, Mehlhorn H (2006d) Persistency of larvicidal effects of plant oil extracts under different storage conditions. Parasitol Res 99:473–477.CrossRefGoogle Scholar
  7. Atiko R, Kwaji A, Yoriyo KP, Onocha PA (2016) Chemical composition and larvicidal activity of Hyptis spicigera volatile oils against mosquito larvae: Anopheles gambiae and Culex quinquefasciatus say. Int J Sci Eng Res 7(7):888–891Google Scholar
  8. Bazylko A, Borzym J, Parzonko A (2015) Determination of in vitro antioxidant and UV-protecting activity of aqueous and ethanolic extracts from Galinsoga parviflora and Galinsoga quadriradiata herb. J Photo Photobiol B: Biol 149:189–195CrossRefGoogle Scholar
  9. Bazylko A, Stolarczyk M, Derwinska M, Anna Karolina K (2012) Determination of antioxidant activity of extracts and fractions obtained from Galinsoga parviflora and Galinsoga quadriradiata, and a qualitative study of the most active fractions using TLC and HPLC methods. Nat Prod Res 26(17):1584–1593.  https://doi.org/10.1080/14786419.2011.582469 CrossRefGoogle Scholar
  10. Benelli G (2015a) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114(8):2801–2805.  https://doi.org/10.1007/s00436-015-4586-9 CrossRefGoogle Scholar
  11. Benelli G (2015b) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res 114(9):3201–3212.  https://doi.org/10.1007/s00436-015-4656-z CrossRefGoogle Scholar
  12. Benelli G (2016a) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115(1):23–34.  https://doi.org/10.1007/s00436-015-4800-9 CrossRefGoogle Scholar
  13. Benelli G (2016b) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzym Microb Technol 95:58–68.  https://doi.org/10.1016/j.enzmictec.2016.08.022 CrossRefGoogle Scholar
  14. Benelli G (2017) Commentary: data analysis in bionanoscience–issues to watch for. J Clust Sci 28(1):11–14.  https://doi.org/10.1007/s10876-016-1143-3 CrossRefGoogle Scholar
  15. Benelli G (2018) Gold nanoparticles – against parasites and insect vectors. Acta Trop 178:73-80,  https://doi.org/10.1016/j.actatropica.2017.10.021.CrossRefGoogle Scholar
  16. Benelli G, Beier J (2017) Current vector control challenges in the fight against malaria. Acta Trop 174:91–96,  https://doi.org/10.1016/j.actatropica.2017.06.028.CrossRefGoogle Scholar
  17. Benelli G, Govindarajan M (2017) Green-synthesized mosquito oviposition attractants and ovicides: towards a nanoparticle-based “lure and kill” approach? J Clust Sci 28(1):287–308.  https://doi.org/10.1007/s10876-016-1088-6 CrossRefGoogle Scholar
  18. Benelli G, Mehlhorn H (2016) Declining malaria, rising dengue and Zika virus: insights for mosquito vector control. Parasitol Res 115(5):1747–1754.  https://doi.org/10.1007/s00436-016-4971-z CrossRefGoogle Scholar
  19. Benelli G, Pavela R (2018) Repellence of essential oils and selected compounds against ticks – a systematic review. Acta Trop 179:47–54.  https://doi.org/10.1016/j.actatropica.2017.12.025
  20. Benelli G, Romano D (2017) Mosquito vectors of Zika virus. Entomol Gen 36(4):309–318.  https://doi.org/10.1127/entomologia/2017/0496.CrossRefGoogle Scholar
  21. Benelli G, Lo Iacono A, Canale A, Mehlhorn H (2016a) Mosquito vectors and the spread of cancer: an overlooked connection? Parasitol Res 115(6):2131–2137.  https://doi.org/10.1007/s00436-016-5037-y CrossRefGoogle Scholar
  22. Benelli G, Pavela R, Canale A, Mehlhorn H (2016b) Tick repellents and acaricides of botanical origin: a green roadmap to control tick-borne diseases? Parasitol Res 115(7):2545–2560.  https://doi.org/10.1007/s00436-016-5095-1 CrossRefGoogle Scholar
  23. Benelli G, Maggi F, Petrelli R, Canale A, Nicoletti M, Rakotosaona R, Rasoanaivo P (2017a) Not ordinary antimalarial drugs: Madagascar plant decoctions potentiating the chloroquine action against Plasmodium parasites. Ind Crop Prod 103:19–38.  https://doi.org/10.1016/j.indcrop.2017.03.032 CrossRefGoogle Scholar
  24. Benelli G, Rajeswary M, Vijayan P, Senthilmurugan S, Alharbi NS, Shine K, Khaled JM, Govindarajan M (2017b) Boswellia ovalifoliolata (Burseraceae) essential oil as an eco-friendly larvicide? Toxicity against six mosquito vectors of public health importance, non-target mosquito fishes, backswimmers, and water bugs. Environ Sci Pollut Res doi.  https://doi.org/10.1007/s11356-017-8820-0
  25. Benelli G, Govindarajan M, Rajeswary M, Senthilmurugan S, Vijayan P, Alharbi NS, Shine K, Khaled JM (2017c) Larvicidal activity of Blumea eriantha essential oil and its components against six mosquito species, including Zika virus vectors: the promising potential of (4E,6Z)-allo-ocimene, carvotanacetone and dodecyl acetate. Parasitol Res 116(4):1175–1188.  https://doi.org/10.1007/s00436-017-5395-0 CrossRefGoogle Scholar
  26. Benelli G, Rajeswary M, Govindarajan M (2017d) Towards green oviposition deterrents? Effectiveness of Syzygium lanceolatum (Myrtaceae) essential oil against six mosquito vectors and impact on four aquatic biological control agents. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-016-8146-3
  27. Benelli G, Pavela R, Iannarelli R, Petrelli R, Cappellacci L, Cianfaglione K, Afshar FH, Nicoletti M, Canale A, Maggi F (2017e) Synergized mixtures of Apiaceae EOs and related plant-borne compounds: larvicidal effectiveness on the filariasis vector Culex quinquefasciatus say. Ind Crop Prod 96:186–195.  https://doi.org/10.1016/j.indcrop.2016.11.059 CrossRefGoogle Scholar
  28. Boussaada O, Kamel MBH, Ammar S, Haouas D, Mighri Z, Helal AN (2008) Insecticidal activity of some Asteraceae plant extracts against Tribolium confusum. Bull Insectol 61:283–289Google Scholar
  29. Boulos L (2002) Flora of Egypt, Vol. III. Al-Hadara Publishing, Cairo, pp 233–234Google Scholar
  30. Chen XB, Liu XC, Zhou L, Liu ZL (2013) Essential oil composition and larvicidal activity of Clinopodium gracile (Benth.) Matsum (Labiatae) aerial parts against the Aedes albopictus mosquito. Trop J Pharm Res 12:799–804Google Scholar
  31. Cheng SS, Chang HT, Lin CY, Chen PS, Huang CG, Chen WJ, Chang ST (2009c) Insecticidal activities of leaf and twig essential oils from Clausena excavata against Aedes aegypti and Aedes albopictus larvae. Pest Manag Sci 65(3):339–343.  https://doi.org/10.1002/ps.1693 CrossRefGoogle Scholar
  32. Cheng SS, Chua MT, Chang EH, Huang CG, Chen WJ, Chang ST (2009b) Variations in insecticidal activity and chemical compositions of leaf essential oils from Cryptomeria japonica at different ages. Bioresour Technol 100(1):465–470.  https://doi.org/10.1016/j.biortech.2007.11.060 CrossRefGoogle Scholar
  33. Cheng SS, Liu JY, Huang CG, Hsui YR, Chen WJ, Chang ST (2009a) Insecticidal activities of leaf essential oils from Cinnamomum osmophloeum against three mosquito species. Bioresour Technol 100(1):457–464.  https://doi.org/10.1016/j.biortech.2008.02.030 CrossRefGoogle Scholar
  34. Cheng SS, Liu JY, Tsai KH, Chen WJ, Chang ST (2004) Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum provenances. J Agric Food Chem 52(14):4395–4400.  https://doi.org/10.1021/jf0497152 CrossRefGoogle Scholar
  35. Chericoni S, Flamini G, Campeol E, Cioni PL, Morelli I (2004) GC-MS analysis of the essential oil from the aerial parts of Artemisia verlotiorum: variability during the year. Biochem Sys Ecol 32: 423–429Google Scholar
  36. de Souza Tavares W, Cruz I, Petacci F, de Assis Junior SL, de Sousa Freitas S, Zanuncio JC, Serrao JE (2009) Potential use of Asteraceae extracts to control Spodoptera frugiperda (Lepidoptera: Noctuidae) and selectivity to their parasitoids Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) and Telenomus remus (Hymenoptera: Scelionidae). Ind Crop Prod 30(3):384–388.  https://doi.org/10.1016/j.indcrop.2009.07.007 CrossRefGoogle Scholar
  37. Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52(1):81–106.  https://doi.org/10.1146/annurev.ento.52.110405.091440 CrossRefGoogle Scholar
  38. Dharmagadda VSS, Naik SN, Mittal PK, Vasudevan P (2005) Larvicidal activity of Tagetes patula essential oil against three mosquito species. Bioresour Technol 96(11):1235–1240.  https://doi.org/10.1016/j.biortech.2004.10.020 CrossRefGoogle Scholar
  39. Do Nascimento JC, David JM, Barbosa LCA, De Paula VF, Demuner AJ, David JP, Conserva LM, Ferreira JRJC, Guimaraes EF (2013) Larvicidal activities and chemical composition of essential oils from Piper klotzschianum (Kunth) C. DC. (Piperaceae). Pest Manag Sci 69(11):1267–1271.  https://doi.org/10.1002/ps.3495 Google Scholar
  40. Dudek MK, Dudkowski L, Bazylko A, Kazmierski S, Kiss AK (2016) Caffeic acid derivatives isolated from the aerial parts of Galinsoga parviflora and their effect on inhibiting oxidative burst in human neutrophils. Phytochem Lett 16:303–310.  https://doi.org/10.1016/j.phytol.2016.05.007 CrossRefGoogle Scholar
  41. Euro+Med (2006-) Euro+Med PlantBase - the information resource for Euro-Mediterranean plant diversity. Published on the Internet http://ww2.bgbm.org/EuroPlusMed/ [accessed 10 April 2017]
  42. Ferheen S, Ur-Rehman A, Afza N, Malik A, Iqbal L, Rasool MA, Ali MI, Tareen RB (2009) Galinsosides a and B, bioactive flavanone glucosides from Galinsoga parviflora. J Enzyme Inhib Med Chem 24(5):1128–1132.  https://doi.org/10.1080/14756360802667688 CrossRefGoogle Scholar
  43. Ferreira PE, Culleton R, Gil JP, Meshnick SR (2013) Artemisinin resistance in Plasmodium falciparum: what is it really? Tr Parasitol 29(7):318–320.  https://doi.org/10.1016/j.pt.2013.05.002 CrossRefGoogle Scholar
  44. Finney DJ (1971) Probit analysis. Cambridge University Press, London, pp 68–72Google Scholar
  45. Gairola S, Sharma J, Bedi YS (2014) A cross-cultural analysis of Jammu, Kashmir and Ladakh (India) medicinal plant use. J Ethnopharmacol 155(2):925–986.  https://doi.org/10.1016/j.jep.2014.06.029 CrossRefGoogle Scholar
  46. González-Coloma A, Guadaño A, Tonn CE, Sosa ME (2005) Antifeedant/insecticidal terpenes from Asteraceae and Labiatae species native to Argentinean semi-arid lands. Z Naturforsch 60c:855–861Google Scholar
  47. Govindarajan M, Benelli G (2016a) Eco-friendly larvicides from Indian plants: effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors. Ecotox Environ Saf 133:395–402.  https://doi.org/10.1016/j.ecoenv.2016.07.035 CrossRefGoogle Scholar
  48. Govindarajan M, Benelli G (2016b) α-humulene and β-elemene from Syzygium zeylanicum (Myrtaceae) essential oil: highly effective and eco-friendly larvicides against Anopheles subpictus, Aedes albopictus and Culex tritaeniorhynchus (Diptera: Culicidae). Parasitol Res 115(7):2771–2778.  https://doi.org/10.1007/s00436-016-5025-2 CrossRefGoogle Scholar
  49. Govindarajan M, Benelli G (2016c) Artemisia absinthium-borne compounds as novel larvicides: effectiveness against six mosquito vectors and acute toxicity on non-target aquatic organisms. Parasitol Res 115(12):4649–4661.  https://doi.org/10.1007/s00436-016-5257-1 CrossRefGoogle Scholar
  50. Govindarajan M, Shine K, Naiyf S, Alharbi BG (2016) Acute toxicity and repellent activity of the Origanum scabrum Boiss. & Heldr. (Lamiaceae) essential oil against four mosquito vectors of public health importance and its biosafety on non-target aquatic organisms. Environ Sci Pollut Res 23(22):23228–23238.  https://doi.org/10.1007/s11356-016-7568-2 CrossRefGoogle Scholar
  51. Govindarajan M, Rajeswary M, Senthilmurugan S, Vijayan P, Alharbi NS, Shine K, Khaled JM, Benelli G (2017) Curzerene, trans-β-elemenone, and γ-elemene as effective larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus: toxicity on non-target aquatic predators. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-017-8822-y
  52. Haider SZ, Mohan M, Pandey AK, Singh P (2017) Use of Tanacetum tomentosum and Ta. dolichophyllum essential oils as botanical repellents and insecticidal agents against storage pest Tribolium castaneum (Coleoptera: Tenebrionidae). Entomol Res 47(5):318–327.  https://doi.org/10.1111/1748-5967.12228 CrossRefGoogle Scholar
  53. Ibrahim MA, Stewart-Jones A, Pulkkinen J, Poppy GM, Holopainen JK (2008) The influence of different nutrient levels on insect-induced plant volatiles in Bt and conventional oilseed rape plants. Plant Biol 10(1):97–107.  https://doi.org/10.1111/j.1438-8677.2007.00013.x CrossRefGoogle Scholar
  54. Isman B (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51(1):45–66.  https://doi.org/10.1146/annurev.ento.51.110104.151146 CrossRefGoogle Scholar
  55. Isman MB (2008) Botanical insecticides: for richer, for poorer. Pest Manag Sci 64(1):8–11.  https://doi.org/10.1002/ps.1470 CrossRefGoogle Scholar
  56. Isman MB (2015) A renaissance for botanical insecticides? Pest Manag Sci 71(12):1587–1590.  https://doi.org/10.1002/ps.4088 CrossRefGoogle Scholar
  57. Jain N, Srivastava SK, Aggarwal LKK, Ramesh S, Kumar S (2001) Essential oil composition of Zanthoxylum alatum seeds from northern India. Flavour Frag J 16(6):408–410.  https://doi.org/10.1002/ffj.1024 CrossRefGoogle Scholar
  58. Kiran SR, Bhavani K, Devi PS, Rao BRR, Reddy KJ (2006) Composition and larvicidal activity of leaf and stem essential oils of Chloroxylon swietenia DC against Aedes aegypti and Anopheles stephensi. Bioresour Technol 97(18):2481–2484.  https://doi.org/10.1016/j.biortech.2005.10.003 CrossRefGoogle Scholar
  59. Kramer WL, Mulla MS (1979) Oviposition attractants and repellents of mosquitoes: oviposition responses of Culex mosquitoes to organic infusions. Environ Entomol 8(6):1111–1114.  https://doi.org/10.1093/ee/8.6.1111 CrossRefGoogle Scholar
  60. Lawal OA, Ogunwande IA, Salvador AF, Sanni AA, Opoku AR (2014) Pachira glabra Pasq. essential oil: chemical constituents, antimicrobial and insecticidal activities. J Oleo Sci 63(6):629–635.  https://doi.org/10.5650/jos.ess13179 CrossRefGoogle Scholar
  61. Lee HS (2006) Mosquito larvicidal activity of aromatic medicinal plant oils against Aedes aegypti and Culex pipiens pallens. J Am Mosq Control Assoc 22(2):292–295.Google Scholar
  62. Liang Z, Ying JT (2011) Chemical composition and larvicidal effects of essential oil of Blumea martiniana against Anopheles anthropophagus. Asian Pac J Trop Med:371–374Google Scholar
  63. Liu XC, Dong HW, Zhou L, Du SS, Liu ZL (2012) Essential oil composition and larvicidal activity of Toddalia asiatica roots against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res 2012 112:1197–1203CrossRefGoogle Scholar
  64. Liu XC, Liu Q, Chen XB, Zhou L, Liu ZL (2015) Larvicidal activity of the essential oil from Tetradium glabrifolium fruits and its constituents against Aedes albopictus. Pest Manag Sci 71(11):1582–1586.  https://doi.org/10.1002/ps.3964 CrossRefGoogle Scholar
  65. Liu XC, Liu QR, Zhou L, Liu QR, Liu ZL (2014) Chemical composition of Zanthoxylum avicennae essential oil and its larvicidal activity on Aedes albopictus Skuse. Trop J Pharm Res 2014 13:399–404Google Scholar
  66. Liu XC, Liu ZL (2014) Evaluation of larvicidal activity of the essential oil of Ageratum conyzoides L. aerial parts and its major constituents against Aedes albopictus. J Entomol Zool Stud 2(4):345–350Google Scholar
  67. Lomonaco D, Santiago GMP, Ferreira YS, Arriaga AMC, Mazzetto SE, Meleç G, Vasapollo G (2009) Study of technical CNSL and its main components as new green larvicides. Green Chem 11(1):31–33.  https://doi.org/10.1039/B811504D CrossRefGoogle Scholar
  68. Lucia A, Audino PG, Seccacini E, Licastro S, Zerba E, Masuh H (2007) Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Aedes aegypti larvae. J Am Mosq Control Assoc 23(3):299–303.Google Scholar
  69. Mancini E, De Martino L, Marandino A, Scognamiglio MR, Feo D (2011) Chemical composition and possible in vitro phytotoxic activity of Helichrsyum italicum (Roth) Don ssp. italicum. Molecules 16(12):7725–7735.  https://doi.org/10.3390/molecules16097725 CrossRefGoogle Scholar
  70. Marques MMM, Morais SM, Vieira ÍGP, Vieira MGS, Silva ARA, Almeida RR, Guedes MIF (2011) Larvicidal a activity of Tagetes erecta against Aedes aegypti. J Am Mosq Control Assoc 27(2):156–158.  https://doi.org/10.2987/10-6056.1 CrossRefGoogle Scholar
  71. Mehlhorn H (ed) (2015) Encyclopedia of parasitology, 4th edn. Springer, New 893, YorkGoogle Scholar
  72. Miyazawa M, Nakamura Y, Ishikawa Y (2000) Insecticidal sesquiterpene from Alpinia oxyphylla against Drosophila melanogaster. J Agric Food Chem 48(8):3639–3641.  https://doi.org/10.1021/jf000325z CrossRefGoogle Scholar
  73. Morshedloo MR, Craker LE, Salami A, Nazeri V, Sang H, Maggi F (2017) Effect of prolonged water stress on essential oil content, compositions and gene expression patterns of mono- and sesquiterpene synthesis in two oregano (Origanum vulgare L.) subspecies. Plant Physiol Biochem 111:119–128.  https://doi.org/10.1016/j.plaphy.2016.11.023 CrossRefGoogle Scholar
  74. Mossa JS, Muhammad I, El-Feraly FS, Huffor CD, McPhail DR, McPhail AT (1992) Bisabolene and guaiane sesuiterpenes from Pulicaria glutinosa. Phytochemistry 31(2):575–578.  https://doi.org/10.1016/0031-9422(92)90041-N CrossRefGoogle Scholar
  75. Mostafa I, El-Aziz EA, Hafez S, El-Shazly A (2013) Chemical constituents and biological activities of Galinsoga parviflora Cav. (Asteraceae) from Egypt. Z Naturforsch 68:285–292.  https://doi.org/10.5560/ZNC.2013.68c0285 CrossRefGoogle Scholar
  76. Namukobe J, Kasenene JM, Kiremire BT, Byamukama R, Kamatenesi-Mugisha M, Krief S, Dumontet V, Kabasa JD (2011) Traditional plants used for medicinal purposes by local communities around the northern sector of Kibale National Park, Uganda. J Ethnopharmacol 136(1):236–245.  https://doi.org/10.1016/j.jep.2011.04.044 CrossRefGoogle Scholar
  77. Naqqash MN, Gökçe A, Bakhsh A, Salim M (2016) Insecticide resistance and its molecular basis in urban insect pests. Parasitol Res 115(4):1363–1373.  https://doi.org/10.1007/s00436-015-4898-9 CrossRefGoogle Scholar
  78. Ochwang’i DO, Kimwele CN, Oduma JA, Gathumbi PK, Mbaria JM, Kiama SG (2014) Medicinal plants used in treatment and management of cancer in Kakamega County, Kenya. J Ethnopharmacol 151(3):1040–1055.  https://doi.org/10.1016/j.jep.2013.11.051 CrossRefGoogle Scholar
  79. Omena MC, Navarro DMAF, De Paula JE, Luna JS, De Lima MRF, SantAna AEG (2007) Larvicidal activities against Aedes aegypti of some Brazilian medicinal plants. Bioresour Technol 98(13):2549–2556.  https://doi.org/10.1016/j.biortech.2006.09.040 CrossRefGoogle Scholar
  80. Pan ZH, Zhao L, Huang R, Ma GY, Li ZQ (2007), Terpenes and sterols from Galinsoga parviflora. J Yunnan Univ Nat Sci 29: 613–616Google Scholar
  81. Pavela R (2008) Larvicidal activities of some euro-Asiatic plants against Culex quinquefasciatus say (Diptera: Culicidae). J Biopest 1(1):81–85Google Scholar
  82. Pavela R (2015) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crop Prod 76:174–187.  https://doi.org/10.1016/j.indcrop.2015.06.050 CrossRefGoogle Scholar
  83. Pavela R, Benelli G (2016a) Ethnobotanical knowledge on botanical repellents employed in the African region against mosquito vectors—a review. Exp Parasitol 167:103–108.  https://doi.org/10.1016/j.exppara.2016.05.010 CrossRefGoogle Scholar
  84. Pavela R, Benelli G (2016b) Essential oils as eco-friendly biopesticides? Challenges and constraints. Tr Plant Sci 21:1000–1007, 12, DOI:  https://doi.org/10.1016/j.tplants.2016.10.005
  85. Pavela R, Vrchotova N, Triska J (2009) Mosquitocidal activities of thyme oils (Thymus vulgaris L.) against Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 105(5):1365–1370.  https://doi.org/10.1007/s00436-009-1571-1 CrossRefGoogle Scholar
  86. Pavela R, Canale A, Mehlhorn H, Benelli G (2016) Application of ethnobotanical repellents and acaricides in prevention, control and management of livestock ticks: a review. Res Vet Sci 109:1–9.  https://doi.org/10.1016/j.rvsc.2016.09.001 CrossRefGoogle Scholar
  87. Picot S, Olliaro P, De Monbrison F, Bienvenu AL, Price RN, Ringwald P (2009) A systematic review and meta-analysis of evidence for correlation between molecular markers of parasite resistance and treatment outcome in falciparum malaria. Malar J 8(1):89.  https://doi.org/10.1186/1475-2875-8-89 CrossRefGoogle Scholar
  88. Pignatti S (1982) Flora d’Italia. Edagricole, Bologna, Vol. III, p 63Google Scholar
  89. Pino JA, Gaviria M, Quevedo-Vega J, García-Lesmes L, Quijano-Celis CE (2010) Essential oil of Galinsoga parviflora leaves from Colombia. Nat Prod Comm 5:1831–1832Google Scholar
  90. Raal A, Orav A, Arak E (2012) Essential oil composition of Foeniculum vulgare Mill. fruits from pharmacies in different countries. Nat Prod Res 26(13):1173–1178.  https://doi.org/10.1080/14786419.2010.535154 CrossRefGoogle Scholar
  91. Rawani A, Ghosh A, Laskar S, Chandra G (2014) Glucosinolate from leaf of Solanum nigrum L. (Solanaceae) as a new mosquito larvicide. Parasitol Res 113(12):4423–4430.  https://doi.org/10.1007/s00436-014-4120-5 CrossRefGoogle Scholar
  92. Ro D-K, Ehlting J, Keeling CI, Lin R, Mattheus N, Bohlmann J (2006) Microarray expression proWling and functional characterization of AtTPS genes: Duplicated Arabidopsis thaliana sesquiterpene synthase genes At4g13280 and At4g13300 encode root-speciWc and wound-inducible (Z)-γ-bisabolene synthases. Arch Biochem Biophys 448:104–116Google Scholar
  93. Ruiz C, Cachay M, Domínguez M, Velásquez C, Espinoza G, Ventosilla P, Rojas R (2011) Chemical composition, antioxidant and mosquito larvicidal activities of essential oils from Tagetes filifolia, Tagetes minuta and Tagetes elliptica from Perú. Planta Med 77:PE30CrossRefGoogle Scholar
  94. Sakthivadivel M, Daniel T (2008) Evaluation of certain insecticidal plants for the control of vector mosquitoes viz., Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti. Appl Entomol Zool 43(1):57–63.  https://doi.org/10.1303/aez.2008.57 CrossRefGoogle Scholar
  95. Schmidt C, Fronza M, Goettert M, Geller F, Luik S, Flores EMM, Bittencourt CF, Zanetti GD, Heinzmann BM, Laufer S, Merfort I (2009) Biological studies on Brazilian plants used in wound healing. J Ethnopharmacol 122(3):523–532.  https://doi.org/10.1016/j.jep.2009.01.022 CrossRefGoogle Scholar
  96. Sefidkon F, Jamzad Z, Mirza M (2004) Chemical variation in the essential oil of Satureja sahendica from Iran. Food Chem 88(3):325–328.  https://doi.org/10.1016/j.foodchem.2003.12.044 CrossRefGoogle Scholar
  97. Senthilkumar A, Kannathasan K, Venkatesalu V (2008) Chemical constituents and larvicidal property of the essential oil of Blumea mollis (D. Don) Merr. against Culex quinquefasciatus. Parasitol Res 103(4):959–962.  https://doi.org/10.1007/s00436-008-1085-2 CrossRefGoogle Scholar
  98. Shaalan EA, Canyon D, Younes MW, Abdel-Wahab H, Mansour AH (2005) A review of botanical phytochemicals with mosquitocidal potential. Environ Int 31(8):1149–1166.  https://doi.org/10.1016/j.envint.2005.03.003 CrossRefGoogle Scholar
  99. Sivakumar R, Jebanesan A, Govindarajan M, Rajasekar P (2011) Oviposition attractancy of dodecanoic, hexadecanoic and tetradecanoic acids against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Eur Rev Med Pharmacol Sci 15(10):1172–1175Google Scholar
  100. Sulaiman S, Abang Kamarudin DSF, Othman H (2008) Evaluation of bifenthrin and Acorus calamus Linn. extract against Aedes aegypti L. and Aedes albopictus (Skuse). J Arthropod-Borne Dis 2:7–11. 25Google Scholar
  101. Tariq S, Ferheen S, Moazzam M, Jabbar A, Riaz N, Saleem M, Afza N, Malik A, Tareen RB (2008) Phytochemical studies on Galinsoga parviflora. J Chem Soc Pak 30:762–765Google Scholar
  102. Tene V, Malagón O, Finzi PV, Vidari G, Armijos C, Zaragoza T (2007) An ethnobotanical survey of medicinal plants used in Loja and Zamora-Chinchipe, Ecuador. J Ethnopharmacol 111(1):63–81.  https://doi.org/10.1016/j.jep.2006.10.032 CrossRefGoogle Scholar
  103. Tiwary M, Naik SN, Dhananjay Kumar T, Mittal PK, Yadav S (2007) Chemical composition and larvicidal activities of the essential oil of Zanthoxylum armatum DC (Rutaceae) against three mosquito vectors. J Vect Borne Dis 44:198–204Google Scholar
  104. Tolossa K, Debela E, Athanasiadou S, Tolera A, Ganga G, Houdijk JGM (2013) Ethno-medicinal study of plants used for treatment of human and livestock ailments by traditional healers in south Omo, southern Ethiopia. J Ethnobiol Ethnomed 9(1):32.  https://doi.org/10.1186/1746-4269-9-32 CrossRefGoogle Scholar
  105. Turek C, Stintzing FC (2013) Stability of essential oils: a review. Compr Rev Food Sci 12:2253–2263CrossRefGoogle Scholar
  106. Vera SS, Zambrano DF, Méndez-Sanchez SC, Rodríguez-Sanabria F, Stashenko EE, Luna JED (2014) Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae). Parasitol Res 113(7):2647–2654.  https://doi.org/10.1007/s00436-014-3917-6 CrossRefGoogle Scholar
  107. Vignesh A, Elumalai D, Rama P, Elangovan K, Murugesan K (2016) Chemical composition and larvicidal activity of the essential oil of Glycosmis pentaphylla (Retz.) against three mosquito vectors. Int J Mosq Res 3(2):62–67Google Scholar
  108. WHO (2012) Handbook for integrated vector management. World Health 646 Organization, GenevaGoogle Scholar
  109. World Health Organization (2005) Guidelines for laboratory and field testing of mosquito larvicides. Communicable disease control, prevention and eradication, WHO pesticide evaluation scheme. WHO, Geneva, WHO/CDS/WHOPES/GCDPP/1.3Google Scholar
  110. Xue RD, Barnard DR, Ali A (2001) Laboratory and field evaluation of insect repellents as oviposition deterrents against the mosquito Aedes albopictus. Med Vet Entomol15: 126–131Google Scholar
  111. Zhu L, Tian Y (2011) Chemical composition and larvicidal activity of Blumea densiflora essential oils against Anopheles anthropophagus: a malarial vector mosquito. Parasitol Res 109(5):1417–1422.  https://doi.org/10.1007/s00436-011-2388-2 CrossRefGoogle Scholar
  112. Zhu L, Tian Y (2013) Chemical composition and larvicidal activity of essential oil of Artemisia gilvescens against Anopheles anthropophagus. Parasitol Res 112(3):1137–1142.  https://doi.org/10.1007/s00436-012-3243-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Unit of Vector Control, Phytochemistry and Nanotechnology, Department of ZoologyAnnamalai UniversityAnnamalainagarIndia
  2. 2.Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and ManagementAlagappa UniversityKaraikudiIndia
  3. 3.Department of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  4. 4.National Center for Biotechnology, King Abdulaziz City for Science and TechnologyRiyadhSaudi Arabia
  5. 5.School of PharmacyUniversity of CamerinoCamerinoItaly
  6. 6.Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
  7. 7.The BioRobotics Institute, Sant’Anna School of Advanced StudiesPontederaItaly

Personalised recommendations