Environmental Science and Pollution Research

, Volume 25, Issue 10, pp 10006–10013 | Cite as

Association of detoxification enzymes with butene-fipronil in larvae and adults of Drosophila melanogaster

  • Muhammad Shahid Arain
  • Muhammad Shakeel
  • Mohammed Esmail Abdalla Elzaki
  • Muhammad Farooq
  • Muhammad Hafeez
  • Muhammad Rafiq Shahid
  • Syed Ali Haider Shah
  • Fawad Zafar Ahmad Khan
  • Qaiser Shakeel
  • Abdalla Markaz Abdalla Salim
  • Guo-Qing Li
Research Article


Insecticide resistance is a major challenge in successful insect pest control as the insects have the ability to develop resistance to various widely used insecticides. Butene-fipronil is a novel compound with high toxicity to insects and less toxicity to the non-target organisms. In the present study, the effect of butene-fipronil alone and in combination with three enzyme inhibitors, piperonyl butoxide (PBO), diethyl maleate (DEM), and triphenyl phosphate (TPP), was carried out on larvae and adults of Drosophilia melanogaster. Our results indicated that the co-toxicity indices of butene-fipronil + PBO, butene-fipronil + TPP, and butene-fipronil + DEM mixtures were 437.3, 335.0, and 210.3, respectively, in the second-instar larvae, while 186.6, 256.2, and 238.5, respectively, in the adults, indicating synergistic effects. Interestingly, butene-fipronil increased the expression of CYP28A5 in the larvae; CYP9F2, CYP304A1, CYP28A5, and CYP318A1 in the female adults; and CYP303A1 and CYP28A5 in the male adults. Furthermore, high-level expression of Est-7 was observed in the female adults compared to larvae and male adults. Our results suggest that there is no difference in butene-fipronil metabolism in larvae and male and female adults of D. melanogaster.


Butene-fipronil Detoxification enzymes Drosophila melanogaster Synergists 


Funding information

This research was supported by the National Basic Research Program of China (973 Program, No. 2010CB126200), the National Natural Sciences Foundation of China (31272047 and 31360442), and a nationally special fund of China for agri-scientific research in the public interest (201103026).


  1. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267Google Scholar
  2. Arain MS, Hu, X-X, Li G-Q (2014) Assessment of toxicity and potential risk of butene-fipronil using Drosophila melanogaster, in comparison to nine conventional insecticides. Bull Environ Contamination Toxicol 92:190–195Google Scholar
  3. Claudianos C, Russell RJ, Oakeshott JG (1999) The same amino acid substitution in orthologous esterases confers organophosphate resistance on the house fly and a blowfly. Insect Biochem Mol Biol 29(8):675–686. CrossRefGoogle Scholar
  4. Cooper J, Dobson H (2007) The benefits of pesticides to mankind and the environment. Crop Prot 26(9):1337–1348. CrossRefGoogle Scholar
  5. Dierick HA, Greenspan RJ (2006) Molecular analysis of flies selected for aggressive behavior. Nat Genet 38(9):1023–1031. CrossRefGoogle Scholar
  6. Feyereisen R (2005) Insect cytochrome P450 in. Comprehensive molecular insect science. ed. LI Gilbert, K. Iatrou & SS Gill edition. ElsevierGoogle Scholar
  7. Feyereisen R (2011) Arthropod CYPomes illustrate the tempo and mode in P450 evolution. Biochim Biophys Acta (BBA)-Proteins Proteomics 1814:19–28CrossRefGoogle Scholar
  8. Ffrench-Constant R (1999) Target site mediated insecticide resistance: what questions remain? Insect Biochem Mol Biol 29(5):397–403. CrossRefGoogle Scholar
  9. Gilbert LI (2004) Halloween genes encode P450 enzymes that mediate steroid hormone biosynthesis in Drosophila melanogaster. Mol Cell Endocrinol 215(1-2):1–10. CrossRefGoogle Scholar
  10. Chung H, Sztal T, Pasricha S, Sridhar M, Batterham P, Daborn PJ (2009) Characterization of Drosophila melanogaster cytochrome P450 genes. PNAS 106(14):5731–5736. CrossRefGoogle Scholar
  11. Le Goff G, Hilliou F, Siegfried BD, Boundy S, Wajnberg E, Sofer L, Audant P, ffrench-Constant RH, Feyereisen R (2006) Xenobiotic response in Drosophila melanogaster: sex dependence of P450 and GST gene induction. Insect Biochem Mol Biol 36(8):674–682. CrossRefGoogle Scholar
  12. Li X, Huang Q, Yuan J, Tang Z (2007) Fipronil resistance mechanisms in the rice stem borer, Chilo suppressalis Walker. Pestic Biochem Physiol 89(3):169–174. CrossRefGoogle Scholar
  13. Liang D, McGill J, Pietri JE (2017) Unidirectional cross-resistance in German cockroach (Blattodea: Blattellidae) populations under exposure to insecticidal baits. J Econ Entomol 110(4):1713–1718. CrossRefGoogle Scholar
  14. Liu S, Niu H, Xiao T, Xue C, Liu Z, Luo W (2009) Does phenoloxidase contributed to the resistance? Selection with butane-fipronil enhanced its activities from diamondback moths. Open Biochem J 3:9–13. CrossRefGoogle Scholar
  15. Liu Y-H, Chung Y-C, Xiong Y (2001) Purification and characterization of a dimethoate-degrading enzyme of Aspergillus niger ZHY256, isolated from sewage. Appl Environ Microbiol 67(8):3746–3749. CrossRefGoogle Scholar
  16. Matsumura F (2012) Toxicology of insecticides. Springer Science & Business MediaGoogle Scholar
  17. Moores GD, Philippou D, Borzatta V, Trincia P, Jewess P, Gunning R, Bingham G (2009) An analogue of piperonyl butoxide facilitates the characterisation of metabolic resistance. Pest Manag Sci 65(2):150–154. CrossRefGoogle Scholar
  18. Newcomb RD, Campbell P, Ollis D, Cheah E, Russell R, Oakeshott J (1997) A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proc Nat Acad Sci 94(14):7464–7468. CrossRefGoogle Scholar
  19. Niu H, Luo W, Zong J, Wei S, Wang H, Pan Z (2008) Realized heritability of resistance to butene-fipronil in diamondback moth, Plutella xylostella. Acta Phytophylacica Sin 35:165–168Google Scholar
  20. Panini M, Manicardi G, Moores G, Mazzoni E (2016) An overview of the main pathways of metabolic resistance in insects. ISJ 13:326–335Google Scholar
  21. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45–e45, 9, 445, DOI:
  22. Raffa KF, Priester TM (1985) Synergists as research tools and control agents in agriculture. J Agric Entomol 2:27–45Google Scholar
  23. Scharf ME, Siegfried BD, Meinke LJ, Chandler LD (2000) Fipronil metabolism, oxidative sulfone formation and toxicity among organophosphate- and carbamate-resistant and susceptible western corn rootworm populations. Pest Manag Sci 56(9):757–766. Google Scholar
  24. Scott J (1991) Insecticide resistance in insects. In: Handbook of Pest Management, vol 2, pp 663–677Google Scholar
  25. Shakeel M, Farooq M, Nasim W, Akram W, Khan FZA, Jaleel W, Zhu X, Yin H, Li S, Fahad S, Hussain S, Chauhan BS, Jin F (2017a) Environment polluting conventional chemical control compared to an environmentally friendly IPM approach for control of diamondback moth, Plutella xylostella (L.), in China: a review. Environ Sci Pollut Res 24(17):14537–14550. CrossRefGoogle Scholar
  26. Shakeel M, Rodriguez A, Tahir UB, Jin F (2017b) Gene expression studies of reference genes for quantitative real-time PCR: an overview in insects. Biotechnol Lett.
  27. Shakeel M, Zhu X, Kang T, Wan H, Li J (2015) Selection and evaluation of reference genes for quantitative gene expression studies in cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J Asia-Pacific Entomol 18(2):123–130. CrossRefGoogle Scholar
  28. Tang J, Li J, Shao Y, Yang B, Liu Z (2010) Fipronil resistance in the whitebacked planthopper (Sogatella furcifera): possible resistance mechanisms and cross-resistance. Pest Manag Sci 66(2):121–125. CrossRefGoogle Scholar
  29. van Leeuwen CJ, Vermeire TG (2007) Risk assessment of chemicals: an introduction. Springer Science & Business Media, DOI:,
  30. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:Res 0034. 0031Google Scholar
  31. Wang SP, He GL, Chen RR, Li F, Li GQ (2012) The involvement of cytochrome P450 monooxygenases in methanol elimination in Drosophila melanogaster larvae. Arch Insect Biochem Physiol 79(4-5):264–275. CrossRefGoogle Scholar
  32. Wang S-P, Hu X-X, Meng Q-W, Muhammad SA, Chen R-R, Li F, Li G-Q (2013a) The involvement of several enzymes in methanol detoxification in Drosophila melanogaster adults. Comp Biochem Physiol B: Biochem Mol Biol 166(1):7–14. CrossRefGoogle Scholar
  33. Wang Y, Chen L, An X, Jiang J, Wang Q, Cai L, Zhao X (2013b) Susceptibility to selected insecticides and risk assessment in the insect egg parasitoid Trichogramma confusum (Hymenoptera: Trichogrammatidae). J Econ Entomol 106(1):142–149. CrossRefGoogle Scholar
  34. Wang ZY, Lu YJ, Zhao YR (2015) Fumigation action of four plant oils against eggs of Callosobruchus chinensis (L.) (Coleoptera: Bruchidae). J Essent Oil Bearing Plants 19:1394–1403CrossRefGoogle Scholar
  35. Willoughby L, Chung H, Lumb C, Robin C, Batterham P, Daborn PJ (2006) A comparison of Drosophila melanogaster detoxification gene induction responses for six insecticides, caffeine and phenobarbital. Insect Biochem Mol Biol 36(12):934–942. CrossRefGoogle Scholar
  36. Wilson TG (2001) Resistance of Drosophila to toxins. Annu Rev Entomol 46(1):545–571. CrossRefGoogle Scholar
  37. Wu G (2004) Susceptibility to insecticides and enzymetic characteristics inthe parasitoid Apanteles plutellae Kurdj. (Hymenoptera: Braconidae) and its host Plutella xylostella (L.) (Lepidoptera: Yponomeutidae). Acta Entomol Sin 47:25–32Google Scholar
  38. Yu R, Wang Y, Wu C, Cang T, Chen L, Wu S, Zhao X (2012) Acute toxicity and risk assessment of butene-fipronil to silkworm, Bombyx mori. Asian J Ecotox 6:639–645Google Scholar
  39. Yuan Z, Wang X, Hao X, Lai Z, Deng X (2009) Formulation development of butene-fipronil 20% WG. Agrochem Res Appl 13:14–17Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Muhammad Shahid Arain
    • 1
    • 2
  • Muhammad Shakeel
    • 3
  • Mohammed Esmail Abdalla Elzaki
    • 2
  • Muhammad Farooq
    • 4
  • Muhammad Hafeez
    • 5
  • Muhammad Rafiq Shahid
    • 6
  • Syed Ali Haider Shah
    • 7
  • Fawad Zafar Ahmad Khan
    • 8
  • Qaiser Shakeel
    • 9
  • Abdalla Markaz Abdalla Salim
    • 5
  • Guo-Qing Li
    • 1
  1. 1.Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
  2. 2.Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Key Laboratory of Integrated Pest Management in AgricultureGuangdong Institute of Applied Biological ResourcesGuangzhouChina
  3. 3.Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
  4. 4.Entomological Research Institute, Ayub Agricultural Research InstituteFaisalabadPakistan
  5. 5.College of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
  6. 6.Central Cotton Research InstituteMultanPakistan
  7. 7.Sindh Agricultural UniversityTandojamPakistan
  8. 8.Department of EntomologyMuhammad Nawaz Sharif University of AgricultureMultanPakistan
  9. 9.College of Agriculture and Environmental SciencesThe Islamia University of BahawalpurBahawalpurPakistan

Personalised recommendations