Environmental Science and Pollution Research

, Volume 25, Issue 11, pp 10164–10183 | Cite as

New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications

  • Rijuta Ganesh Saratale
  • Ganesh Dattatraya Saratale
  • Han Seung Shin
  • Jaya Mary Jacob
  • Arivalagan Pugazhendhi
  • Mukesh Bhaisare
  • Gopalakrishanan Kumar
Plant-borne compounds and nanoparticles: challenges for medicine, parasitology and entomology

Abstract

Nanotechnology is a rapidly growing scientific field and has attracted a great interest over the last few years because of its abundant applications. Green nanotechnology is a multidisciplinary field that has emerged as a rapidly developing research area, serving as an important technique that emphasize on making the procedure which are clean, non-hazardous, and especially environmentally friendly, in contrast with chemical and physical methods currently employed for nanosynthesis. The biogenic routes could be termed green as these do not involve the use of highly toxic chemicals or elevated energy inputs during the synthesis. Differences in the bio-reducing agents employed for nanosynthesis can lead to the production of nanoparticles (NPs) having distinct shapes, sizes, and bioactivity. The exquitiveness of the green fabricated NPs have capacitated their potential applications in various sectors such as biomedicine, pharmacology, food science, agriculture, and environmental engineering. The present review summarizes current knowledge on various biogenic synthesis methods, relying on plants, waste biomass, and biopolymers and their reducing and stabilizing agents to fabricate nanomaterials. The main emphasis has been given on the current status and future challenges related to the wide-scale fabrication of nanoparticles for environmental remediation, pathogenicity, and agricultural applications.

Keywords

Biosafety Green nanoparticles Microbial pathogen Nanopesticide Non-target effects 

Notes

Acknowledgements

This research was completely supported by Dongguk University-Seoul, South Korea under research fund 2016–2018. The financial assistance to one of the authors (GK) from Ton Duc Thang University, Vietnam, is highly acknowledged.

References

  1. Ahmad A, Senapati S, Khan MI et al (2003) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553CrossRefGoogle Scholar
  2. Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, Fatma A (2010) Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B: Biointerfaces 81:81–86CrossRefGoogle Scholar
  3. Ahmed S, Mudasir A, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28CrossRefGoogle Scholar
  4. Ajitha B, Reddy YAK, Reddy PS (2015) Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract. Mater Sci Eng C 49:373–381CrossRefGoogle Scholar
  5. Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA (2016) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29:221–236CrossRefGoogle Scholar
  6. Álvarez RAB, Valadez MC, Hurtado RB, Bueno LON, Lopez NSF, Martínez ARH, Corrales RG, Ortiz RV, Chacon JGB, Chavez HA, Acosta MF (2015) Raman scattering and optical properties of lithium nanoparticles obtained by green synthesis. Vib Spectrosc 77:5–9CrossRefGoogle Scholar
  7. Arokiyaraj S, Saravanan M, Udaya Prakash NK et al (2013) Enhanced antibacterial activity of iron oxide magnetic nanoparticles treated with Argemone mexicana L. leaf extract: an in vitro study. Mater Res Bull 48:3323–3327CrossRefGoogle Scholar
  8. Arokiyaraj S, Kumar VD, Elakya V et al (2015) Biosynthesized silver nanoparticles using floral extract of Chrysanthemum indicum L.—potential for malaria vector control. Environ Sci Pollut Res 22:9759–9765CrossRefGoogle Scholar
  9. Arokiyaraj S, Vincent S, Saravanan M et al (2017) Green synthesis of silver nanoparticles using Rheum palmatum root extract and their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Artif Cells, Nanomed Biotechnol 45:372–379CrossRefGoogle Scholar
  10. Azandehi PK, Moghaddam J (2015) Green synthesis, characterization and physiological stability of gold nanoparticles from Stachys lavandulifolia. Vahl Extract Particuol 19:22–26CrossRefGoogle Scholar
  11. Baca R, Cheong KY (2015) Green synthesis of iron oxide thin-films grown from recycled iron foils. Mater Sci Semicond Process 29:294–299CrossRefGoogle Scholar
  12. Bai RG, Muthoosamy K, Shipton FN, Alagarsamy P, Perumal R, Nay MH, Sivakumar M (2016) Biogenic synthesis of reduced graphene oxide-silver (RGO-Ag) nanocomposite and its dual applications as antibacterial agent and cancer biomarker sensor. RSC Adv 43 doi: 10.1039/C6RA02928K
  13. Banka A, Joshi B, Kumar AR, Zinjarde S (2010) Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf A Physicochem Eng Asp 368:58–63CrossRefGoogle Scholar
  14. Banumathi B, Vaseeharan B, Suganya P et al (2017) Toxicity of Camellia sinensis-fabricated silver nanoparticles on invertebrate and vertebrate organisms: morphological abnormalities and DNA damages. J Clust Sci 28:2027–2040CrossRefGoogle Scholar
  15. Barabadi H, Honary S, Mohammadi MA et al (2017) Green chemical synthesis of gold nanoparticles by using Penicillium aculeatum and their scolicidal activity against hydatid cyst protoscolices of Echinococcus granulosus. Environ Sci Pollut Res 24:5800–5810CrossRefGoogle Scholar
  16. Basavegowda N, Rok LY (2013) Synthesis of silver nanoparticles using Satsuma mandarin (Citrus unshiu) peel extract: a novel approach towards waste utilization. Mater Lett 109:31–33CrossRefGoogle Scholar
  17. Begum NA, Mondal S, Basu S, Laskar RA, Mandal D (2009) Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of black tea leaf extracts. Colloids Surf B 71:113–118CrossRefGoogle Scholar
  18. Benelli G, Govindarajan M (2017) Green-synthesized mosquito oviposition attractants and ovicides: towards a nanoparticle-based “lure and kill” approach? J Clust Sci 28:287–308CrossRefGoogle Scholar
  19. Benelli G, Lukehart CM (2017) Special issue: applications of green-synthesized nanoparticles in pharmacology, parasitology and entomology. J Clust Sci 28:1–2CrossRefGoogle Scholar
  20. Benelli G, Govindarajan M, Kadaikunnan S, Alharbi NS (2017) What kind of reducing botanical? High mosquitocidal efficacy of a silver nanocomposite synthesized using a leaf aqueous extract of Fumaria indica. J Cluster Sci 28:637–643CrossRefGoogle Scholar
  21. Bergeson LL (2010) Nanosilver pesticide products: what does the future hold? Environ Qual Manag 19:73–82CrossRefGoogle Scholar
  22. Bermudez E, Mangum J, Wong B, Asgharian B, Hext P, Warheit D (2004) Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 77:347–357CrossRefGoogle Scholar
  23. Berti L, Burley GA (2008) Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles. Nat Nano 3:81–87CrossRefGoogle Scholar
  24. Bindhu MR, Umadevi M (2015) Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochim Acta A 135:373–378CrossRefGoogle Scholar
  25. Bokare V, Murugesan K, Kim JH, Kim EJ, Chang YS (2012) Integrated hybrid treatment for the remediation of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Sci Total Environ 435-436:563–566CrossRefGoogle Scholar
  26. Bonatto CC, Silva LP (2014) Higher temperatures speed up the growth and control the size and optoelectrical properties of silver nanoparticles greenly synthesized by cashew nutshell. Ind Crop Prod 58:46–54CrossRefGoogle Scholar
  27. Borase HP, Bipinchandra K, Salunke RB, Salunkhe C, Patil D, John E, Hallsworth B, Kim S, Patil SV (2014) Plant extract: a promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles. Appl Biochem Biotechnol 173:1–29CrossRefGoogle Scholar
  28. Bordes P, Pollet E, Averous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Progr Polym Sci 34:125–155CrossRefGoogle Scholar
  29. Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS et al (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52–62CrossRefGoogle Scholar
  30. Bryaskova R, Pencheva D, Nikolov S, Kantardjiev T (2011) Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). J Chem Biol 4:185–191CrossRefGoogle Scholar
  31. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583CrossRefGoogle Scholar
  32. Chandrasekharan DK, Khanna PK, Kagiya TV, Nair CK (2011) Synthesis of nanosilver using a vitamin C derivative and studies on radiation protection. Cancer Biother Radiopharm 26:249–257CrossRefGoogle Scholar
  33. Corradini E, De Moura MR, Mattoso LHC (2010) A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 4:509–515CrossRefGoogle Scholar
  34. Coseri S, Spatareanu A, Sacarescu L, Rimbu C, Suteu D, Spirk S, Harabagiu V (2015) Green synthesis of the silver nanoparticles mediated by pullulan and 6-carboxypullulan. Carbohydr Polym 116:9–17CrossRefGoogle Scholar
  35. Cruz D, Falé PL, Mourato A, Vaz PD, Serralheiro ML, Lino ARL (2010) Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (lemon verbena). Colloids Surf B: Biointerfaces 81:67–73CrossRefGoogle Scholar
  36. Cui W, Glycineg N, Liu Q, Ge C, Asiri AM, Sun X (2014) Mo2C nanoparticles decorated graphitic carbon sheets: biopolymer-derived solid-state synthesis and application as an efficient electrocatalyst for hydrogen generation. ACS Catal 4:2658–2661CrossRefGoogle Scholar
  37. Darroudi M, Sabouri Z, Oskuee RK, Zak AK, Kargar H, Hamid MHNA (2013) Sol–gel synthesis, characterization, and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth. Ceram Int 39:9195–9199CrossRefGoogle Scholar
  38. Darroudi M, Sabouri Z, Oskuee RK, Zak AK, Kargar H, Hamid MHNA (2014a) Green chemistry approach for the synthesis of ZnO nanopowders and their cytotoxic effects. Ceram Int 40:4827–4831CrossRefGoogle Scholar
  39. Darroudi M, Sarani M, Oskuee RK, Zak AK, Hosseini HA, Gholami L (2014b) Green synthesis and evaluation of metabolic activity of starch mediated nanoceria. Ceram Int 40:2041–2045CrossRefGoogle Scholar
  40. Darroudi M, Bagherpour M, Hosseini HA, Ebrahimi M (2016) Biopolymer-assisted green synthesis and characterization of calcium hydroxide nanoparticles. Ceramics 42:3816–3819CrossRefGoogle Scholar
  41. Das S, Sen B, Debnath N (2015) Recent trends in nanomaterials applications in environmental monitoring and remediation. Environ Sci Pollut Res 22:18333–18344CrossRefGoogle Scholar
  42. Devi PS, Banerjee S, Chowdhury SR, Kumar GS (2012) Eggshell membrane: a natural biotemplate to synthesize fluorescent gold nanoparticles. RSC Adv 2:11578–11585CrossRefGoogle Scholar
  43. Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–1529CrossRefGoogle Scholar
  44. Dooley CJ, Rouge J, Ma N, Invernale M, Kelley SO (2007) Nucleotide-stabilized cadmium sulfide nanoparticles. J Mater Chem 17:1687–1691CrossRefGoogle Scholar
  45. Elsupikhe RF, Shameli K, Ahmad MB, Ibrahim NA, Zainudin N (2015) Green sonochemical synthesis of silver nanoparticles at varying concentrations of κ-carrageenan. Nanoscale Res Lett 10:302CrossRefGoogle Scholar
  46. Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Ashokkumar S (2015a) Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochim Acta A 143:158–164CrossRefGoogle Scholar
  47. Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Ashokkumar S (2015b) Facile, eco-friendly and template free photosynthesis of cauliflower like ZnO nanoparticles using leaf extract of Tamarindus indica (L.) and its biological evolution of antibacterial and antifungal activities. Spectrochim Acta A Mol Biomol Spectrosc 136:1052–1057CrossRefGoogle Scholar
  48. Emeka EE, Ojiefoh OC, Aleruchi C, Hassan LA, Christiana OM, Rebecca M, Dare EO, Temitope AE (2014) Evaluation of antibacterial activities of silver nanoparticles green-synthesized using pineapple leaf (Ananas comosus). Micron 57:1–5CrossRefGoogle Scholar
  49. Emerich DF, Thanos CG (2003) Nanotechnology and medicine. Expert Opin Biol Ther 3:655–663CrossRefGoogle Scholar
  50. Emmanuel R, Palanisamy S, Chen S-M et al (2015) Antimicrobial efficacy of green synthesized drug blended silver nanoparticles against dental caries and periodontal disease causing microorganisms. Mater Sci Eng: C 56:374–379CrossRefGoogle Scholar
  51. Fajardo C, Ortiz LT, Rodriguez-Membibre ML, Nande M, Lobo MC, Matin M (2012) Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach. Chemosphere 86:802–808CrossRefGoogle Scholar
  52. de la Fuente JM, Grazu V (2012) Nanobiotechnology: inorganic nanoparticles vs organic nanoparticles. Elsevier, Netherlands, p 542Google Scholar
  53. Gao L, Li R, Sui X, Li R, Chen C, Chen Q (2014) Conversion of chicken feather waste to N-doped carbon nanotubes for the catalytic reduction of 4-nitrophenol. Environ Sci Technol 48:10191–10197CrossRefGoogle Scholar
  54. Gavade NL, Kadam AN, Suwarnkar MB, Ghodake VP, Garadkar KM (2015) Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus jujuba leaf extract. Spectrochim Acta A Mol Biomol Spectrosc 136:953–960CrossRefGoogle Scholar
  55. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803CrossRefGoogle Scholar
  56. Gómez-Pastora J, Dominguez S, Bringasa E, Riveroa MJ, Ortiza I, Dionysioub D (2017) Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chem Eng J 310:407–427CrossRefGoogle Scholar
  57. Gopinath K, Venkatesh KS, Ilangovan R, Sankaranarayanan K, Arumugam A (2013) Green synthesis of gold nanoparticles from leaf extract of Terminalia arjuna, for the enhanced mitotic cell division and pollen germination activity. Ind. Crops Prod 50:737–742CrossRefGoogle Scholar
  58. Grieger KD, Fjordøge A, Hartmann NB, Eriksson E, Bjerg PL, Baun A (2010) Environmental benefits and risks of zero-valent iron particles (nZVI) for in situ remediation: risk mitigation or trade-off? J Contam Hydrol 118:165–183CrossRefGoogle Scholar
  59. Gunalan S, Sivaraj R, Venckatesh R (2012) Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties. Spectrochim Acta A Mol Biomol Spectrosc 97:1140–1144CrossRefGoogle Scholar
  60. Guo M, Li W, Yang F, Liu H (2015) Controllable biosynthesis of gold nanoparticles from a Eucommia ulmoides bark aqueous extract. Spectrochim Acta A Mol Biomol Spectrosc 142:73–79CrossRefGoogle Scholar
  61. Haytham M, Ibrahim M (2015) Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci 8:265–275CrossRefGoogle Scholar
  62. Huang X, Wu H, Liao X, Shi B (2010) One-step, size-controlled synthesis of gold nanoparticles at room temperature using plant tannin. Green Chem 12:395–399CrossRefGoogle Scholar
  63. Ibrahim HMM (2015) Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci 8:265–275CrossRefGoogle Scholar
  64. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9:385–406Google Scholar
  65. Jacob SJP, Finub JS, Narayanan A (2012) Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids Surf B: Biointerfaces 91:212–214CrossRefGoogle Scholar
  66. Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T et al (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A: Mol Biomol Spectrosc 90:78–84CrossRefGoogle Scholar
  67. Jin R (2012) The impacts of nanotechnology on catalysis by precious metal nanoparticles. Nanotechnol Rev 1:31–56Google Scholar
  68. Joo SH, Zhao D (2008) Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effects of catalyst and stabilizer. Chemosphere 70:418–425CrossRefGoogle Scholar
  69. Joseph S, Mathew B (2015) Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes. J Mol Liq 204:184–191CrossRefGoogle Scholar
  70. Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43:1823–1867CrossRefGoogle Scholar
  71. Kanmani P, Lim ST (2013) Synthesis and structural characterization of silver nanoparticles using bacterial exopolysaccharide and its antimicrobial activity against food and multidrug resistant pathogens. Process Biochem 48:1099–1106CrossRefGoogle Scholar
  72. Kasithevar M, Periakaruppan P, Muthupandian S, Mohan M (2017) Antibacterial efficacy of silver nanoparticles against multi-drug resistant clinical isolates from post-surgical wound infections. Microb Pathog 107:327–334CrossRefGoogle Scholar
  73. Kasthuri J, Veerapandian S, Rajendiran N (2009) Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloid Surf B: Biointerfaces 68:55–60CrossRefGoogle Scholar
  74. Khazaei A, Khazaei M, Rahmati S (2015) A green method for the synthesis of gelatin/pectin stabilized palladium nano-particles as efficient heterogeneous catalyst for solvent-free Mizoroki–Heck reaction. J Mol Catal A Chem 398:241–247CrossRefGoogle Scholar
  75. Kim F, Sohn K, Wu J, Huang J (2008) Chemical synthesis of gold nanowires in acidic solutions. J Am Chem Soc 130:14442–14443CrossRefGoogle Scholar
  76. Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B 76:50–56CrossRefGoogle Scholar
  77. Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A Mol Biomol Spectrosc. 93:95–99Google Scholar
  78. Krishnaswamy K, Orsat V (2015) Insight into the nanodielectric properties of gold nanoparticles synthesized from maple leaf and pine needle extracts. Ind Crop Prod 66:131–136CrossRefGoogle Scholar
  79. Krishnaswamy K, Vali H, Orsat V (2014) Value-adding to grape waste: green synthesis of gold nanoparticles. J Food Eng 142:210–220CrossRefGoogle Scholar
  80. Kulkarni N, Muddapur U (2014) Biosynthesis of metal nanoparticles: a review. J Nanotechnol 2014:8. doi: 10.1155/2014/510246
  81. Kumar KP, Paul W, Sharma CP (2011) Green synthesis of gold nanoparticles with Zingiber officinale extract: characterization and blood compatibility. Process Biochem 46:2007–2013CrossRefGoogle Scholar
  82. Kumar P, Senthamil SS, Lakshmi PA, Kumar PK, Ganeshkumar RS, Govindaraju M (2012) Synthesis of silver nanoparticles from Sargassum tenerrimum and screening phytochemicals for its antibacterial activity. Nano Biomed Eng 4:12–16Google Scholar
  83. Kumar B, Smita K, Cumbal L, Debut A (2014) Synthesis of silver nanoparticles using Sacha inchi (Plukenetia volubilis L.) leaf extracts. Saudi J Biol Sci 21:605–609CrossRefGoogle Scholar
  84. Lakshmipathy R, Reddy PB, Sarada NC, Chidambaram K, Khadeer PS (2015) Watermelon rind-mediated green synthesis of noble palladium nanoparticles: catalytic application. Appl Nanosci 5:223–228CrossRefGoogle Scholar
  85. Li B, Wang X, Xia D, Chu Q, Liu X, Lu F, Zhao X (2011) One-step green synthesis of cuprous oxide crystals with truncated octahedra shapes via a high pressure flux approach. J Solid State Chem 184:2097–2102CrossRefGoogle Scholar
  86. Li M, Lin D, Zhu L (2013) Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environ Pollut 173:97–102CrossRefGoogle Scholar
  87. Li SK, Pan YY, Wu M, Huang FZ, Li CH, Shen YH (2014) Large-scale and green synthesis of octahedral flower-like cupric oxide nanocrystals with enhanced photochemical properties. Appl Surf Sci 315:169–177CrossRefGoogle Scholar
  88. Li CC, Yu H, Yan Q, Hng HH (2015) Green synthesis of highly reduced graphene oxide by compressed hydrogen gas towards energy storage devices. J Power Sources 274:310–317CrossRefGoogle Scholar
  89. Luo CH, Shanmugam V, Yeh CS (2015) Nanoparticle biosynthesis using unicellular and subcellular supports. NPG Asia Mater 7:209CrossRefGoogle Scholar
  90. Machado S, Pinto SL, Grosso JP, Nouws HPA, Albergaria JT, Delerue-Matos C (2013) Green production of zero-valent iron nanoparticles using tree leaf extracts. Sci Total Environ 445–446:1–8CrossRefGoogle Scholar
  91. Machado S, Grosso JP, Nouws HPA, Albergaria JT, Delerue-Matos C (2014) Utilization of food industry wastes for the production of zero-valent iron nanoparticles. Sci Total Environ 496:233–240CrossRefGoogle Scholar
  92. Madhumitha G, Rajakumar G, Roopan SM, Rahuman AA, Priya KM, Saral AM, Khan FR, Khanna VG, Velayutham K, Jayaseelan C, Kamaraj C, Elango G (2012) Acaricidal, insecticidal, and larvicidal efficacy of fruit peel aqueous extract of Annona squamosa and its compounds against blood-feeding parasites. Parasitol Res 111:2189–2199CrossRefGoogle Scholar
  93. Malaikozhundan B, Vaseeharan B, Vijayakumar S, Pandiselvi K, Kalanjiam R, Murugan K, Benelli G (2017) Biological therapeutics of Pongamia pinnata coated zinc oxide nanoparticles against clinically important pathogenic bacteria, fungi and MCF-7 breast cancer cells. Microb Pathog 104:268–277CrossRefGoogle Scholar
  94. Malhotra A, Sharma N, Navdezda KN, Dolma K, Sharma D, Nandanwar HS, Choudhury AR (2014) Multi-analytical approach to understand biomineralization of gold using rice bran: a novel and economical route. RSC Adv 4:39484–39490Google Scholar
  95. Malleshappa J, Nagabhushana H, Prashantha SC, Sharma SC, Dhananjaya N, Nagabhushana BM, Shivakumara C, Abreu F (2014) Eco-friendly green synthesis, structural and photoluminescent studies of CeO2:Eu3+nanophosphors using E. tirucalli plant latex. J Alloys Compd 612:425–434CrossRefGoogle Scholar
  96. Marin RP, Kondrat SA, Pinnell RK, Davies TE, Golunski S, Bartley JK, Hutchings GJ, Taylor SH (2013) Green preparation of transition metal oxide catalysts using supercritical CO2 anti-solvent precipitation for the total oxidation of propane. Appl Catal B Environ 140–141:671–679CrossRefGoogle Scholar
  97. Mariselvam R, Ranjitsingh AJA, Nanthini AUR, Kalirajan K, Padmalatha C, Selvakumar PM (2014) Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (family: Arecaceae) for enhanced antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 129:537–541CrossRefGoogle Scholar
  98. Mihranyan A, Ferraz N, Strømme M (2012) Current status and future prospects of nanotechnology in cosmetics. Prog Mater Sci 57:875–910CrossRefGoogle Scholar
  99. Miri A, Sarani M, Bazaz MR, Darroudi M (2015) Plant-mediated biosynthesis of silver nanoparticles using Prosopis farcta extract and its antibacterial properties. Spectrochim Acta A Mol Biomol Spectrosc 141:287–291CrossRefGoogle Scholar
  100. Mitra M, Chatterjee K, Kargupta K, Ganguly S, Banerjee D (2013) Reduction of graphene oxide through a green and metal-free approach using formic acid. Diam Relat Mater 37:74–79CrossRefGoogle Scholar
  101. Moghaddam MG, Dabanlou RH (2014) Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Crataegus douglasii fruit extract. J Ind Eng Chem 20:739–744CrossRefGoogle Scholar
  102. Mohan Kumar K, Mandal BK, Hoskote KKA, Maddinedi SB (2013) Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract. Spectrochim Acta A Mol Biomol Spectrosc 102:128–133CrossRefGoogle Scholar
  103. Mubarak Ali D, Gopinath V, Rameshbabu N, Thaju N (2012) Synthesis and characterization of CdS nanoparticles using C-phycoerythrin from the marine cyanobacteria. Mater Lett 74:8–11CrossRefGoogle Scholar
  104. Muniyappan N, Nagarajan NS (2014) Green synthesis of gold nanoparticles using Curcuma pseudomontana essential oil, its biological activity and cytotoxicity against human ductal breast carcinoma cells T47D. J Environ Chem Eng 2:2037–2044CrossRefGoogle Scholar
  105. Murugan K, Jaganathan A, Dinesh D, Suresh U, Rajaganesh R, Chandramohan B, Subramaniam J, Paulpandi M, Vadivalagan C, Wang L, Hwang JS, Wei H, Saleh Alsalhi M, Devanesan S, Kumar S, Pugazhendy K, Higuchi A, Nicoletti M, Benelli G (2016) Synthesis of nanoparticles using chitosan from crab shells: implications for control of malaria mosquito vectors and impact on non-target organisms in the aquatic environment. Ecotoxicol Environ Safety 132:318–328CrossRefGoogle Scholar
  106. Muthuvel A, Adavallan K, Balamurugan K, Krishnakumar N (2014) Biosynthesis of gold nanoparticles using Solanum nigrum leaf extract and screening their free radical scavenging and antibacterial properties. Biomed Prev Nutr 4:325–332CrossRefGoogle Scholar
  107. Nabikhan A, Kandasamy K, Raj A, Alikunhi NM (2010) Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from salt marsh plant, Sesuvium portulacastrum L. Colloids Surf B: Biointerfaces 79:488–493CrossRefGoogle Scholar
  108. Naika HR, Lingaraju K, Manjunath K, Kumar D, Nagaraju G, Sureshd D, Nagabhushana H (2015) Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J Taibah Univ Sci 9:7–12CrossRefGoogle Scholar
  109. Nasrollahzadeh M, Sajadi SM, Vartooni AR, Bagherzadeh M (2015) Green synthesis of Pd/CuO nanoparticles by Theobroma cacao L. seeds extract and their catalytic performance for the reduction of 4-nitrophenol and phosphine-free Heck coupling reaction under aerobic conditions. J Colloid Interface Sci 448:106–113CrossRefGoogle Scholar
  110. Naveen PBS, Padmesh TVN (2014) Seaweed (Sargassum ilicifolium) assisted green synthesis of palladium nanoparticles. Int J Sci Eng Res 5:229–231Google Scholar
  111. Nazeruddin GM, Prasad NR, Prasad SR, Shaikh YI, Waghmare SR, Adhyapak P (2014) Coriandrum sativum seed extract assisted in situ green synthesis of silver nanoparticle and its anti-microbial activity. Ind Crop Prod 60:212–216CrossRefGoogle Scholar
  112. Oberdörster E, Zhu S, Blickley TM, McClellan GP, Haasch ML (2006) Ecotoxicology of carbon-based engineered particles: effects of fullerene (view the MathML source) on aquatic organisms. Carbon 44:1112–1120CrossRefGoogle Scholar
  113. Okuda M, Suzumoto Y, Iwahori K, Kang S, Uchida M, Douglas T, Yamashita I (2009) Bio-templated CdSe nanoparticle synthesis in a cage shaped protein, Listeria-Dps, and their two dimensional ordered array self-assembly. Chem Commun 46:8797–8799CrossRefGoogle Scholar
  114. Paknikar KM, Nagpal V, Pethkar AV, Rajwade JM (2005) Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers. Sci Technol Adv Mater 6:370–374CrossRefGoogle Scholar
  115. Panacek A, Kvítek L, Prucek R, Kolar M, Vecerova R et al (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253CrossRefGoogle Scholar
  116. Passos MLC, Costa D, Lima JLFC, Saraiva MLMFS (2015) Sequential injection technique as a tool for the automatic synthesis of silver nanoparticles in a greener way. Talanta 133:45–51CrossRefGoogle Scholar
  117. Patil SS, Shedbalkar UU, Truskewycz A, Chopade BA, Ball AS (2016) Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environ Technol Innov 5:10–21CrossRefGoogle Scholar
  118. Paul B, Bhuyan B, Purkayastha DD, Dey M, Dhar SS (2015) Green synthesis of gold nanoparticles using Pogestemon benghalensis (B) O. Ktz. leaf extract and studies of their photocatalytic activity in degradation of methylene blue. Mater Lett 148:37–40CrossRefGoogle Scholar
  119. Pavela R, Murugan K, Canale A, Benelli G (2017) Saponaria officinalis-synthesized silver nanocrystals as effective biopesticides and oviposition inhibitors against Tetranychus urticae Koch. Ind Crop Prod 97:338–344CrossRefGoogle Scholar
  120. Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta A 73:374–381CrossRefGoogle Scholar
  121. Philip D, Unni C (2011) Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi (Ocimum sanctum) leaf. Phys E 43:1318–1322CrossRefGoogle Scholar
  122. Poole CP Jr, Owens FJ (2013) Introduction to nanotechnology. Wiley, New York, p 408Google Scholar
  123. Pourmortazavi SM, Taghdiri M, Makari V, Nasrabadi MR (2015) Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa. Spectrochim Acta A Mol Biomol Spectrosc 136:1249–1254CrossRefGoogle Scholar
  124. Prakash P, Gnanaprakasam P, Emmanuel R et al (2013) Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf B Biointerfaces 108:255–259CrossRefGoogle Scholar
  125. Prasad TNVKV, Kambala VSR, Naidu R (2013) Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. J Appl Phycol 25:177–182CrossRefGoogle Scholar
  126. Qu J, Yuan X, Wang X, Shao P (2011) Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alke. Environ Pollut 159:1783–1788CrossRefGoogle Scholar
  127. Rajan R, Chandran K, Harper SL, Yun SI, Kalaichelvan PT (2015) Plant extract synthesized silver nanoparticles: an ongoing source of novel biocompatible materials. Ind Crop Prod 70:356–373CrossRefGoogle Scholar
  128. Rajiv P, Rajeshwari S, Venckatesh R (2013) Bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim Acta A Mol Biomol Spectrosc 112:384–387CrossRefGoogle Scholar
  129. Ramesh M, Anbuvannan M, Viruthagiri G (2015a) Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 136:864–870CrossRefGoogle Scholar
  130. Ramesh PS, Kokil T, Geetha D (2015b) Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract. Spectrochim Acta A Mol Biomol Spectrosc 142:339–343CrossRefGoogle Scholar
  131. Ramkumar VS, Pugazhendhi A, Kumar G, Sivagurunathan P, Saratale GD, Dung TNB, Kannapiran E (2017a) Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnol Rep 14:1–7CrossRefGoogle Scholar
  132. Ramkumar VS, Pugazhendhi A, Prakash S et al (2017b) Synthesis of platinum nanoparticles using seaweed Padina gymnospora and their catalytic activity as PVP/PtNPs nanocomposite towards biological applications. Biomed Pharmacother 92:479–490CrossRefGoogle Scholar
  133. Rangnekar A, Sarma TK, Singh AK, Deka J, Aiyagari R, Chattopadhyay A (2007) Retention of enzymatic activity of r-amylase in the reductive synthesis of gold nanoparticles. Langmuir 23:5700–5706CrossRefGoogle Scholar
  134. Rastogi L, Arunachalam J (2013) Green synthesis route for the size controlled synthesis of biocompatible gold nanoparticles using aqueous extract of garlic (Allium sativum). Adv Mat Lett 4:548–555CrossRefGoogle Scholar
  135. Rhim JW, Kanmani P (2015) Synthesis and characterization of biopolymer agar mediated gold nanoparticles. Mater Lett 141:114–117CrossRefGoogle Scholar
  136. Richard PF (1959) Plenty of room at the bottom. Transcript talk presented to the American Physical Society in PasadenaGoogle Scholar
  137. Romano MF, Gil MLA, Santander JMP, Jaén JJD, Rodríguez IN, Cisneros JLH, Aguilera LMC (2014) Sonosynthesis of gold nanoparticles from a geranium leaf extract. Ultrason Sonochem 21:1570–1577CrossRefGoogle Scholar
  138. Rotello V (2012) Nanoparticles: building blocks for nanotechnology. Springer Science & Business Media, Berlin, p 291Google Scholar
  139. Sajjad S, Sajjad AKL, Ryma NA, Farooqi SA, Jabeen N, Majeed S, Farooq I (2016) Advancements in nanoparticle fabrication by hazard free eco-friendly green routes. Appl Mater Today 5:150–199CrossRefGoogle Scholar
  140. Samata NA, Nor RM (2013) Sol–gel synthesis of zinc oxide nanoparticles using Citrus aurantifolia extracts. Ceram Int 39:S545–S548CrossRefGoogle Scholar
  141. San BH, Lee S, Moh SH, Park JG, Lee JH, Hwang HY, Kim KK (2013) Size-controlled synthesis and characterization of CoPt nanoparticles using protein shells. J Mater Chem B 1:1453–1460CrossRefGoogle Scholar
  142. Sanvicens N, Marco MP (2008) Multifunctional nanoparticles—properties and prospects for their use in human medicine. Trends Biotechnol 26:425–433CrossRefGoogle Scholar
  143. Saratale RG, Benelli G, Kumar G, Kim DS, Saratale GD (2017a) Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens. Environ Sci Pollut Res 1-14 doi: 10.1007/s11356-017-9581-5
  144. Saratale GD, Saratale RG, Benelli G, Kumar G, Pugazhendhi A, Kim DS, Shin HS (2017b) Anti-diabetic potential of silver nanoparticles synthesized with Argyreia nervosa leaf extract high synergistic antibacterial activity with standard antibiotics against foodborne bacteria. J Cluster Sci 28:1709-1727Google Scholar
  145. Saratale RG, Shin HS, Kumar G, Benelli G, Ghodake GS, Jiang YY, Kim DS, Saratale GD (2017c) Exploiting fruit byproducts for eco-friendly nanosynthesis: Citrus × clementina peel extract mediated fabrication of silver nanoparticles with high efficacy against microbial pathogens and rat glial tumor C6 cells. Environ Sci Pollut Res 1-14. doi: 10.1007/s11356-017-8724-z
  146. Saratale RG, Shin HS, Kumar G, Benelli G, Kim DS, Saratale GD (2017d) Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2). Artif Cells Nanomed Biotechnol 14:1-12. doi: 10.1080/21691401.2017.1337031 Google Scholar
  147. Saravanan M, Jacob V, Arockiaraj J, Prakash P (2014) Extracellular biosynthesis, characterization and antibacterial activity of silver nanoparticles synthesized by Bacillus subtilis (NCIM—2266). J Bionanosci 8:21–27CrossRefGoogle Scholar
  148. Sarkar D, Mandal K, Mandal M (2011) Synthesis of chainlike α-Fe2O3 nanoparticles in DNA template and their characterization. Nanosci Nanotechnol Lett 3:170–174CrossRefGoogle Scholar
  149. Sathishkumar M, Sneha K, Kwak IS, Mao J, Tripathy SJ, Yun YS (2009) Phyto-crystallization of palladium through reduction process using Cinnamom zeylanicum bark extract. J Hazard Mater 171:400–404CrossRefGoogle Scholar
  150. Sathiya CK, Akilandeswari S (2014) Fabrication and characterization of silver nanoparticles using Delonix elata leaf broth. Spectrochim Acta A Mol Biomol Spectrosc 128:337–341CrossRefGoogle Scholar
  151. Sato-Berrú R, Redón R, Vázquez-Olmos A, Saniger J (2009) Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy. J Raman Spectrosc 40:376–380CrossRefGoogle Scholar
  152. Seo M, Yoon D, Hwang KS, Kang JW, Kim J (2013) Supercritical alcohols as solvents and reducing agents for the synthesis of reduced graphene oxide. Carbon 64:207–218CrossRefGoogle Scholar
  153. Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green of metallic synthesis nanoparticles via biological entities. Material 8:7278–7308CrossRefGoogle Scholar
  154. Shaikh SF, Mane RS, Joo OS (2014) Mass scale sugar-mediated green synthesis and DSSCs application of tin oxide nanostructured photoanode: effect of zinc sulphide layering on charge collection efficiency. Electrochim Acta 147:408–417CrossRefGoogle Scholar
  155. Shankar S, Jaiswal L, Aparna RSL, Prasad RGSV (2014) Synthesis, characterization, in vitro biocompatibility, and antimicrobial activity of gold, silver and gold silver alloy nanoparticles prepared from Lansium domesticum fruit peel extract. Mater Lett 137:75–78CrossRefGoogle Scholar
  156. Shankar PD, Shobana S, Karuppusamy I et al (2016) A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: formation mechanism and applications. Enzym Microb Technol 95:28–44CrossRefGoogle Scholar
  157. Shanmuganathan R, MubarakAli D, Prabakar D, et al (2017) An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach. Environ Sci Pollut Res 1–9. doi: 10.1007/s11356-017-9367-9
  158. Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea-Torresdey JL, Pal T (2007) Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol 41:5137–5142CrossRefGoogle Scholar
  159. Sharma JK, Akhtar MS, Ameen S, Srivastava P, Singh G (2015a) Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. J Alloys Compd 632:321–325CrossRefGoogle Scholar
  160. Sharma JK, Srivastava P, Singh G, Akhtar MS, Ameen S (2015b) Green synthesis of Co3O4 nanoparticles and their applications in thermal decomposition of ammonium perchlorate and dye-sensitized solar cells. Mater Sci Eng B 193:181–188CrossRefGoogle Scholar
  161. Shi C, Zhu N, Cao Y, Wu P (2015) Biosynthesis of gold nanoparticles assisted by the intracellular protein extract of Pycnoporus sanguineus and its catalysis in degradation of 4-nitroaniline. Nanoscale Res Lett 10:147Google Scholar
  162. Singh S, Singh M, Agrawal VV, Kumar A (2010) An attempt to develop surface plasmon resonance based immunosensor for Karnal bunt (Tilletia indica) diagnosis based on the experience of nano-gold based lateral flow immune-dipstick test. Thin Solid Films 519:1156–1159CrossRefGoogle Scholar
  163. Singh R, Misra V, Mudiam MKR, Chauhan LKS, Singh RP (2012) Degradation of -HCH spiked soil using stabilized Pd/Fe0 bimetallic nanoparticles: pathways, kinetics and effect of reaction conditions. J Hazard Mater 237–238:355–364CrossRefGoogle Scholar
  164. Song JY, Kwon EY, Kim BS (2010) Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng 33:159–164CrossRefGoogle Scholar
  165. Srivastava V, Sharma YC, Sillanpää M (2015) Green synthesis of magnesium oxide nanoflower and its application for the removal of divalent metallic species from synthetic waste water. Ceram Int 41:6702–6709CrossRefGoogle Scholar
  166. Suman TY, Rajasree SRR, Ramkumar R, Rajthilak C, Perumal P (2014) The green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L. Spectrochim Acta A Mol Biomol Spectrosc 118:11–16CrossRefGoogle Scholar
  167. Suresh AK (2014) Extracellular bio-production and characterization of small monodispersed CdSe quantum dot nanocrystallites. Spectrochim Acta Part A: Mol Biomol Spectrosc 130:344–349CrossRefGoogle Scholar
  168. Thakur S, Karak N (2012) Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50:5331–5339CrossRefGoogle Scholar
  169. Tian Y, Wang F, Liu Y, Pang F, Zhang X (2014) Green synthesis of silver nanoparticles on nitrogen-doped graphene for hydrogen peroxide detection. Electrochim Acta 146:646–653CrossRefGoogle Scholar
  170. Tran DN, Kabiri S, Losic D (2014) A green approach for the reduction of graphene oxide nanosheets using non-aromatic amino acids. Carbon 76:193–202CrossRefGoogle Scholar
  171. Udayabhanu RS, Nethravathi PC, Kumar MAP, Suresh D, Lingaraju K, Rajanaika H, Nagabhushana H, Sharma SC (2015) Tinospora cordifolia mediated facile green synthesis of cupric oxide nanoparticles and their photocatalytic, antioxidant and antibacterial properties. Mater Sci Semicond Process 33:81–88CrossRefGoogle Scholar
  172. Uldrich J, Newberry D (2003) The next big thing is really small: how nanotechnology will change the future of your business. Crown Publishing Group; 208 pagesGoogle Scholar
  173. Valodkar M, Modi S, Pal A, Thakore S (2011) Synthesis and anti-bacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: a green approach. Mater Res Bull 46:384–389CrossRefGoogle Scholar
  174. Veerasamy R, Xin TZ, Gunasagaran S, Xiang TFW, Yang EFC, Jeyakumar N, Dhanaraj SA (2011) Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J Saudi Chem Soc 15:113–120CrossRefGoogle Scholar
  175. Velmurugan P, Iydroose M, Lee SM, Cho M, Park JH, Balachandar V, Oh BT (2014a) Synthesis of silver and gold nanoparticles using cashew nut shell liquid and its antibacterial activity against fish pathogens. Indian J Microbiol 54:196–202CrossRefGoogle Scholar
  176. Velmurugan P, Cho M, Lee SM, Park JH, Bae S, Oh BT (2014b) Antimicrobial fabrication of cotton fabric and leather using green-synthesized nanosilver. Carbohydr Polym 106:319–325CrossRefGoogle Scholar
  177. Velusamy P, Kumar GV, Jeyanthi V et al (2016) Bio-inspired green nanoparticles: synthesis, mechanism, and antibacterial application. Toxicol Res 32:95–102CrossRefGoogle Scholar
  178. Venkateswarlu S, Kumar BN, Prasad CH, Venkateswarlu P, Jyothi NVV (2014) Bio-inspired green synthesis of Fe3O4 spherical magnetic nanoparticles using Syzygium cumini seed extract. Physica B 449:67–71CrossRefGoogle Scholar
  179. Venkateswarlu S, Kumar BN, Prathima B, Anitha K, Jyothi NVV (2015) A novel green synthesis of Fe3O4-Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance. Physica B 457:30–35CrossRefGoogle Scholar
  180. Ventra MD, Evoy S, Heflin JR (2004) Introduction to nanoscale science and technology. Springer Science & Business Media, New York, p 630CrossRefGoogle Scholar
  181. Vijayakumar M, Priya K, Nancy FT, Noorlidah A, Ahmed ABA (2013) Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Ind Crop Prod 41:235–240CrossRefGoogle Scholar
  182. Vijayakumar S, Vinoj G, Malaikozhundan B, Shanthi S, Vaseeharan B (2015) Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae. Spectrochim Acta A Mol Biomol Spectrosc 137:886–891CrossRefGoogle Scholar
  183. Vijayan SR, Santhiyagu P, Singamuthu M et al (2014) Synthesis and characterization of silver and gold nanoparticles using aqueous extract of seaweed, Turbinaria conoides, and their antimicrofouling activity. Sci World J 2014:e938272CrossRefGoogle Scholar
  184. Vijayan SR, Santhiyagu P, Ramasamy R et al (2016) Seaweeds: a resource for marine bionanotechnology. Enzym Microb Technol 95:45–57CrossRefGoogle Scholar
  185. Vimala K, Sundarraj S, Paulpandi M, Vengatesan S, Kannan S (2014) Green synthesized doxorubicin loaded zinc oxide nanoparticles regulates the Bax and Bcl-2 expression in breast and colon carcinoma. Process Biochem 49:160–172CrossRefGoogle Scholar
  186. Virkutyte J, Varma RS (2011) Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization. Chem Sci 2:837CrossRefGoogle Scholar
  187. Vivek R, Thangam R, Muthuchelian K, Gunasekaran P, Kaveri K, Kannan S (2012) Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochem 47:2405–2410CrossRefGoogle Scholar
  188. Wang Y, Xia Y (2004) Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett 4:2047–2050CrossRefGoogle Scholar
  189. Wang Z, Wei F, Liu SY, Xu Q, Huang JY (2010) Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticles-modified gold electrode and its detection in oilseed rape infected with fungal pathoge Sclerotinia sclerotiorum. Talanta 80:1277–1281CrossRefGoogle Scholar
  190. Wang T, Jin X, Chen Z, Megharaj M, Naidu R (2014) Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci Total Environ 466–467:210–213CrossRefGoogle Scholar
  191. Yallappa S, Manjanna J, Dhananjaya BL (2015) Phytosynthesis of stable Au, Ag and Au–Ag alloy nanoparticles using J. sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim Acta A Mol Biomol Spectrosc 137:236–243CrossRefGoogle Scholar
  192. Yang X, Qingbiao L, Wang H, Huang J, Lin L, Wang W, Su Y, Opiyo JB, Hong L (2009) Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J Nanopart Res 12:1589–1598CrossRefGoogle Scholar
  193. Yang F, Li Y, Liu T, Xu K, Zhang L, Xu C, Gao J (2013) Plasma synthesis of Pd nanoparticles decorated-carbon nanotubes and its application in Suzuki reaction. Chem Eng J 226:52–58CrossRefGoogle Scholar
  194. Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 9-82:513–516CrossRefGoogle Scholar
  195. Zahran MK, Ahmed HB, El-Rafie MH (2014) Facile size-regulated synthesis of silver nanoparticles using pectin. Carbohydr Polym 111:971–978CrossRefGoogle Scholar
  196. Zain NM, Stapley AGF, Shama G (2014) Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohydr Polym 112:195–202CrossRefGoogle Scholar
  197. Zamiri R, Azmi BZ, Sadrolhosseini AR, Hossein AA, Zaidan AW, Mahdi MA (2011) Preparation of silver nanoparticles in virgin coconut oil using laser ablation. Int J Nanomedicine 6:71–75CrossRefGoogle Scholar
  198. Zayed MF, Eisa WH, Shabaka AA (2012) Malva parviflora extract assisted green synthesis of silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 98:423–428CrossRefGoogle Scholar
  199. Zhang Y, Wu B, Xu H, Liu H, Wang M, He Y, Pan B (2016) Nanomaterials-enabled water and wastewater treatment. Nano Impact 3–4:22–39Google Scholar
  200. Zheng B, Qian L, Yuan H, Xiao D, Yang X, Paau MC, Choi MM (2010) Preparation of gold nanoparticles on eggshell membrane and their biosensing application. Talanta 82:177–183CrossRefGoogle Scholar
  201. Zielińska-Górska MK, Sawosz E, Górski K, Chwalibog A (2016) Does nanobiotechnology create new tools to combat microorganisms? Nanotechnol Rev 6:171Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Rijuta Ganesh Saratale
    • 1
  • Ganesh Dattatraya Saratale
    • 2
  • Han Seung Shin
    • 2
  • Jaya Mary Jacob
    • 3
  • Arivalagan Pugazhendhi
    • 4
  • Mukesh Bhaisare
    • 5
  • Gopalakrishanan Kumar
    • 4
  1. 1.Research Institute of Biotechnology and Medical Converged ScienceDongguk University-SeoulGoyang-siRepublic of Korea
  2. 2.Department of Food Science and BiotechnologyDongguk University-SeoulGoyang-siRepublic of Korea
  3. 3.Department of Biotechnology and Biochemical Engineering, Sree Buddha College of EngineeringAPJ Abdul Kalam Kerala Technological UniversityThiruvananthapuramIndia
  4. 4.Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour SafetyTon Duc Thang UniversityHo Chi Minh CityVietnam
  5. 5.Department of Marine Environmental EngineeringNational Kaoshung Marine UniversityKaohsiung CityTaiwan

Personalised recommendations