Skip to main content

Advertisement

Log in

Adsorption and mineralization of REE—lanthanum onto bacterial cell surface

  • Interface Effect of Ultrafine Mineral Particles and Microorganisms
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A large number of rare earth element mining and application resulted in a series of problems of soil and water pollution. Environmental remediation of these REE-contaminated sites has become a top priority. This paper explores the use of Bacillus licheniformis to adsorb lanthanum and subsequent mineralization process in contaminated water. The maximum adsorption capacity of lanthanum on bacteria was 113.98 mg/g (dry weight) biomass. X-ray diffraction (XRD) and transmission electron microscopy (TEM) data indicated that adsorbed lanthanum on bacterial cell surface occurred in an amorphous form at the initial stage. Scanning electron microscopy with X-ray energy-dispersive spectroscopy (SEM/EDS) results indicated that lanthanum adsorption was correlated with phosphate. The amorphous material was converted into scorpion-like monazite (LaPO4 nanoparticles) in a month. The above results provide a method of using bacterial surface as adsorption and nucleation sites to treat REE-contaminated water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal YK, Thomaskutty PT (1987) Separation and determination of microgram amounts of lanthanum(iii) using N-phenylbenzohydroxamic acid and xylenol orange. Analyst 112:1015–1017

    Article  CAS  Google Scholar 

  • Bishop ME, Glasser P, Dong HL, Arey B, Kovarik L (2014) Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay minerals. Geochim Cosmochim Ac 133:186–203

    Article  CAS  Google Scholar 

  • Bonificio WD, Clarke DR (2016) Rare-earth separation using bacteria. Environ Sci Tech Let 3:180–184

    Article  CAS  Google Scholar 

  • Cheng YJ, Xu XY, Yan SG, Pan XH, Chen Z, Lin Z (2014) Hydrothermal growth of large-size UO2 nanoparticles mediated by biomass and environmental implications. RSC Adv 4:62476–62482

    Article  CAS  Google Scholar 

  • Cheng YJ, Xu XY, Lin WT, Han R, Liu MH (2016) Transformation from organo-Cr (III) to trivalent chromium mineral (guyanaite/grimaldiite) and its environmental implication. Geomicrobiol J 33:948–953

    Article  CAS  Google Scholar 

  • Dash HR, Das S (2016) Diversity, community structure, and bioremediation potential of mercury-resistant marine bacteria of estuarine and coastal environments of Odisha, India. Environ Sci Pollut R 23:6960–6971

    Article  CAS  Google Scholar 

  • Elder RT (1983): Molecular cloning—a laboratory manual Maniatis T, Pritsch Er, Sambrook J. Bioscience 33, 721–722

  • Fray DJ (2000) Chemical engineering—separating rare earth elements. Science 289:2295–2296

    Article  CAS  Google Scholar 

  • Grawunder A, Merten D, Buchel G (2014) Origin of middle rare earth element enrichment in acid mine drainage-impacted areas. Environ Sci Pollut R 21:6812–6823

    Article  CAS  Google Scholar 

  • Gurumurthy GP, Balakrishna K, Tripti M, Audry S, Riotte J, Braun JJ, Shankar HNU (2014) Geochemical behaviour of dissolved trace elements in a monsoon-dominated tropical river basin, Southwestern India. Environ Sci Pollut R 21:5098–5120

    Article  CAS  Google Scholar 

  • Hou YK, Wu PX, Zhu NW (2014) The protective effect of clay minerals against damage to adsorbed DNA induced by cadmium and mercury. Chemosphere 95:206–212

    Article  CAS  Google Scholar 

  • Huang XY (2015) Preparation and luminescence characteristics of monazite Eu3+:LaPO4 nanocrystals in NH4NO3 molten salt. Opt Mater 50:81–86

    Article  CAS  Google Scholar 

  • Huittinen N, Arinicheva Y, Schmidt M, Neumeier S, Stumpf T (2016) Using Eu3+ as an atomic probe to investigate the local environment in LaPO4-GdPO4 monazite end-members. J Colloid Interf Sci 483:139–145

    Article  CAS  Google Scholar 

  • Kulaksiz S, Bau M (2011) Rare earth elements in the Rhine river, Germany: first case of anthropogenic lanthanum as a dissolved microcontaminant in the hydrosphere. Environ Int 37:973–979

    Article  CAS  Google Scholar 

  • Kulaksiz S, Bau M (2013) Anthropogenic dissolved and colloid/nanoparticle-bound samarium, lanthanum and gadolinium in the Rhine river and the impending destruction of the natural rare earth element distribution in rivers. Earth Planet Sc Lett 362:43–50

    Article  CAS  Google Scholar 

  • Lin WT, Huang Z, Li XZ, Liu MH, Cheng YJ (2016) Bio-remediation of acephate-Pb(II) compound contaminants by Bacillus subtilis FZUL-33. J Environ Sci-China 45:94–99

    Article  Google Scholar 

  • Marciniak L, Stefanski M, Tomala R, Hreniak D, Strek W (2015) Synthesis and spectroscopic properties of RbLa1-xEuxP4O12 nanocrystals. J Alloy Compd 624:210–215

    Article  CAS  Google Scholar 

  • Markova Z, Siskova K, Filip J, Safarova K, Prucek R, Panacek A, Kolar M, Zboril R (2012) Chitosan-based synthesis of magnetically-driven nanocomposites with biogenic magnetite core, controlled silver size, and high antimicrobial activity. Green Chem 14:2550–2558

    Article  CAS  Google Scholar 

  • Martinez RE, Pourret O, Takahashi Y (2014) Modeling of rare earth element sorption to the gram positive Bacillus subtilis bacteria surface. J Colloid Interf Sci 413:106–111

    Article  CAS  Google Scholar 

  • Pan XH, Chen Z, Chen FB, Cheng YJ, Lin Z, Guan X (2015) The mechanism of uranium transformation from U(VI) into nano-uramphite by two indigenous Bacillus thuringiensis strains. J Hazard Mater 297:313–319

    Article  CAS  Google Scholar 

  • Service RF (2010) Rare-earth elements Chinese policies could pinch US efforts to make electric vehicles. Science 329:377–377

    Article  Google Scholar 

  • Singh R, Dong HL, Liu D, Zhao LD, Marts AR, Farquhar E, Tierney DL, Almquist CB, Briggs BR (2015) Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus. Geochim Cosmochim Ac 148:442–456

    Article  CAS  Google Scholar 

  • Stone R (2009) Materials science as China's rare earth R&D becomes ever more rarefied, others tremble. Science 325:1336–1337

    Article  CAS  Google Scholar 

  • Takahashi Y, Hirata T, Shimizu H, Ozaki T, Fortin D (2007) A rare earth element signature of bacteria in natural waters? Chem Geol 244:569–583

    Article  CAS  Google Scholar 

  • Takahashi Y, Chatellier X, Hattori KH, Kato K, Fortin D (2011) Adsorption of rare earth elements onto bacterial cell walls and its implication for REE sorption onto natural microbial mats (vol 219, pg 53, 2005). Chem Geol 288:178–180

    Article  CAS  Google Scholar 

  • Tennesen M (2014) Rare earth. Science 346:692–695

    Article  CAS  Google Scholar 

  • Tsuruta T (2006) Selective accumulation of light or heavy rare earth elements using gram-positive bacteria. Colloid Surface B 52:117–122

    Article  CAS  Google Scholar 

  • Uda T, Jacob KT, Hirasawa M (2000) Technique for enhanced rare earth separation. Science 289:2326–2329

    Article  CAS  Google Scholar 

  • Zhou L, Mavrogenes J, Spandler C, Li HP (2016) A synthetic fluid inclusion study of the solubility of monazite-(La) and xenotime-(Y) in H2O-Na-K-Cl-F-CO2 fluids at 800 degrees C and 0.5 GPa. Chem Geol 442:121–129

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Drs. John Morton, Matthew Duley, and Richard Edelmann for giving us the possibility to perform XRD, TEM, and SEM analyses at Cincinnati University and Miami University. This work was financially supported by the National Basic Research Program of China (973 Program) (no. 2014CB846003) and the National Natural Science Foundation of China (no. 41372346, 21477129). Additional support was provided by the China Scholarship Council (no. 201506655045).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yangjian Cheng or Hailiang Dong.

Additional information

Responsible editor: Guilherme L. Dotto

Yangjian Cheng, Li Zhang equation contribution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Zhang, L., Bian, X. et al. Adsorption and mineralization of REE—lanthanum onto bacterial cell surface. Environ Sci Pollut Res 25, 22334–22339 (2018). https://doi.org/10.1007/s11356-017-9691-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9691-0

Keywords

Navigation