Skip to main content
Log in

Biological nanopesticides: a greener approach towards the mosquito vector control

  • Plant-borne compounds and nanoparticles: challenges for medicine, parasitology and entomology
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mosquitoes, being a vector for some potentially dreadful diseases, pose a considerable threat to people all around the world. The control over the growth and propagation of mosquitoes comprises conventional pesticides, insect growth regulators and other microbial control agents. However, the usage of these common chemicals and conventional pesticides eventually has a negative impact on human health as well as the environment, which therefore becomes a major concern. The lacuna allows nanotechnology to come into action and exploit nanopesticides. Nanopesticides are majorly divided into two categories—synthetic and biological. Several nanoformulations serve as a promising nanopesticide viz. nanoparticles, e.g. biologically synthesised nanoparticles through plant extracts, nanoemulsions prepared using the essential oils like neem oil and citronella oil and nanoemulsion of conventional pesticides like pyrethroids. These green approaches of synthesising nanopesticides make use of non-toxic and biologically derived compounds and hence are eco-friendly with a better target specificity. Even though there are numerous evidences to show the effectiveness of these nanopesticides, very few efforts have been made to study the possible non-target effects on other organisms prevalent in the aquatic ecosystem. This study focuses on the role of these nanopesticides towards the vector control and its eco-safe property against the other non-target species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agnihotri A (1999) Pesticide: safety evaluation and monitoring. Indian Agricultural Research Institute, Division of Agricultural Chemicals

    Google Scholar 

  • Antonio-Nkondjio C, Fossog BT, Ndo C, Djantio BM, Togouet SZ (2011) Anopheles gambiae distribution and insecticide resistance in the cities of Douala and Yaounde (Cameroon): influence of urban agriculture and pollution. Malar J 10:154: 154

  • Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  Google Scholar 

  • Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490

    Article  Google Scholar 

  • Amerasan D, Nataraj T, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Benelli G (2015) Myco-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). J Pest Sci. doi:10.1007/s10340-015-0675-x

  • Anjali C, Khan SS, Margulis-Goshen K, Magdassi S, Mukherjee A, Chandrasekaran N (2010) Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotox environ safe 73:1932–1936

    Article  CAS  Google Scholar 

  • Anjali C, Sharma Y, Mukherjee A, Chandrasekaran N (2012) Neem oil (Azadirachta indica) nanoemulsion—a potent larvicidal agent against Culex quinquefasciatus. Pest Manag Sci 68:158–163

    Article  CAS  Google Scholar 

  • Aurel Y, Jan G, Paul VL, Thijs W, Stephan WFM, Van H, Tom AM, Beumer TA, Robert R, Wijn RR, Rene G, Heideman RG, Vinod S, Johannes S, Kanger JS (2007) Fast ultrasensitive virus detection using a young interferometer sensor. Nano Lett 7:394–397

    Article  Google Scholar 

  • Balaji A, Mishra P, Kumar RS, Ashu A, Margulis K, Magdassi S, Mukherjee A, Chandrasekaran N (2015) The environmentally benign form of pesticide in hydrodispersive nanometric form with improved efficacy against adult mosquitoes at low exposure concentrations. Bull Environ Contam Toxicol 95:734–739

    Article  CAS  Google Scholar 

  • Balkew M, Ibrahim M, Koekemoer LL, Brooke BD, Engers H (2010) Insecticide resistance in Anopheles arabiensis (Diptera: Culicidae) from villages in central, northern and south west Ethiopia and detection of kdr mutation. Parasit Vectors 3:40

    Article  Google Scholar 

  • Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395

    Article  CAS  Google Scholar 

  • Benelli G (2015a) Research in mosquito control: current challenges for a brighter future. Parasitol Res:2801–2805

  • Benelli G (2015b) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res 114:3201–3212

    Article  Google Scholar 

  • Benelli G (2015c) Plant-synthesized nanoparticles: an eco-friendly tool against mosquito vectors? Springer International Publishing Switzerland, H. Mehlhorn (ed.), Nanoparticles in the fight against parasites—parasitology research monographs, doi:10.1007/978-3-319-25292-6_8 (ISSN: 2192-3671)

  • Benelli G (2016a) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115(1):23–34. doi:10.1007/s00436-015-4800-9

    Article  Google Scholar 

  • Benelli G (2016b) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzym Microb Technol 95:58–68

    Article  CAS  Google Scholar 

  • Benelli G (2016c) Plant-mediated synthesis of nanoparticles: a newer and safer tool against mosquito-borne diseases? Asia Pac J Trop Biomed 6:353–354

  • Benelli G (2016d) Spread of Zika virus: the key role of mosquito vector control. Asian Pacific Journal of Tropical Biomedicine 6:468–471

  • Benelli G, Bedini S, Cosci F, Toniolo C, Conti B, Nicoletti M (2015a) Larvicidal and ovi-deterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): a bioactivity survey across production sites. Parasitol Res 114:227–236

    Article  Google Scholar 

  • Benelli G, Bedini SFG, Cosci F, Cioni PL, Amira S, Benchikh F, Laouer H, Di Giuseppe G, Conti B (2015b) Mediterranean essential oils as effective weapons against the West Nile vector Culex pipiens and the Echinos to ma intermediate host Physella acuta: what happens around? An acute toxicity survey on non-target mayflies. Parasitol Res 114:1011–1021

    Article  Google Scholar 

  • Benelli G, Murugan K, Panneerselvam C, Madhiyazhagan P, Conti B, Nicoletti M (2015c) Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res 114:391–397

    Article  Google Scholar 

  • Benelli G, Govindarajan M, Senthilmurugan S, Vijayan P, Kadaikunnan S, Alharbi NS, Khaled JM (2017a) Fabrication of highly effective mosquito nanolarvicides using an Asian plant of ethno-pharmacological interest, Priyangu (Aglaia elaeagnoidea): toxicity on non-target mosquito natural enemies Environmental science and pollution research, 1-11

  • Benelli G, Pavela R, Maggi F, Petrelli R, Nicoletti M (2017b) Commentary: making green pesticides greener? The potential of plant products for nanosynthesis and pest control. J Cluster Sci, 1-8

  • Bhatnagar V (2001) Pesticides pollution: trends and perspectives. ICMR Bull 31:87–88

    Google Scholar 

  • Binks BP (1998) Modern aspects of emulsion science. Royal Society of Chemistry

  • Bowatte G, Perera P, Senevirathne G, Meegaskumbura S, Meegaskumbura M (2013) Tadpoles as dengue mosquito (Aedes aegypti) egg predators. Biol Control 67:469–474

    Article  Google Scholar 

  • Breman J (2001) The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. AmJTropMedHyg 64:1–11

    CAS  Google Scholar 

  • Chadee DD, Williams SA, Ottesen EA (2002) Xenomonitoring of Culex quinquefasciatus mosquitoes as a guide for detecting the presence or absence of lymphatic filariasis: a preliminary protocol for mosquito sampling. Ann Trop Med Parasitol 96:47–53

    Article  Google Scholar 

  • Czeher C, Labbo R, Arzika I, Duchemin JB (2008) Evidence of increasing LeuPhe knockdown resistance mutation in Anopheles gambiae from Niger following a nationwide long-lasting insecticide-treated nets implementation. Malar J 7:189

    Article  Google Scholar 

  • Destrée C, Nagy J (2006) Mechanism of formation of inorganic and organic nanoparticles from microemulsions. Adv Colloid Interf Sci 123:353–367

    Article  Google Scholar 

  • Diabate A, Baldet T, Chandre F, Akoobeto M, Guiguemde TR et al (2002) The role of agricultural use of insecticides in resistance to pyrethroids in Anopheles gambiae s.l. in Burkina Faso. Am J Trop Med Hyg 67:617–622

    Article  CAS  Google Scholar 

  • Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–1529

    Article  Google Scholar 

  • Donnelly MJ, Corbel V, Weetman D, Wilding CS, Williamson MS et al (2009) Does kdr genotype predict insecticide-resistance phenotype in mosquitoes? Trends Parasitol 25:213–219

    Article  CAS  Google Scholar 

  • El-Aasser MS, Sudol ED (2004) Miniemulsions: overview of research and applications. JCT Res 1(1):21–31

    Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531

    Article  CAS  Google Scholar 

  • Floury J, Desrumaux A, Axelos MAV, Legrand J (2003) Effect of high pressure homogenisation on methylcellulose as food emulsifier. J Food Eng 58:227–238

    Article  Google Scholar 

  • Fontenille D, Lochouarn L, Diagne N, Sokhna C, Lemasson JJ (1997) High annual and seasonal variations in malaria transmission by anophelines and vector species composition in Dielmo, a holoendemic area in Senegal. Am J Trop Med Hyg 56:247–253

    Article  CAS  Google Scholar 

  • Forgiarini A, Esquena J, González C, Solans C (2000) Studies of the relation between phase behavior and emulsification methods with nanoemulsion formation. Progr Colloid Polym Sci 115:36–39

    Article  CAS  Google Scholar 

  • Gasco MR, Priano L, Zara GP (2009) Solid lipid nanoparticles and microemulsions for drug delivery: the CNS. Prog Brain Res 180:181–192

    Article  CAS  Google Scholar 

  • Govindarajan M (2010) Larvicidal efficacy of Ficus benghalensis L plant leaf extracts against Culex quinquefasciatus Say, Aedes aegypti L and Anopheles stephensi L (Diptera: Culicidae). Eur Rev Med Pharmacol Sci 14:107–111

    CAS  Google Scholar 

  • Govindarajan M, Benelli G (2016a) Facile biosynthesis of silver nanoparticles using Barleria cristata: mosquitocidal potential and biotoxicity on three non-target aquatic organisms. Parasitol Res 115:925–935

    Article  Google Scholar 

  • Govindarajan M, Benelli G (2016b) A facile one-pot synthesis of eco-friendly nanoparticles using Carissa carandas: ovicidal and larvicidal potential on malaria. Dengue and Filariasis Mosquito Vectors Journal of Cluster Science:1–22

  • Govindarajan M, Benelli G (2016c) One-pot green synthesis of silver nanocrystals using Hymenodictyon orixense: a cheap and effective tool against malaria, chikungunya and Japanese encephalitis mosquito vectors? RSC Adv 6:59021–59029

    Article  CAS  Google Scholar 

  • Govindarajan M, Hoti S, Benelli G (2016a) Facile fabrication of eco-friendly nano-mosquitocides: biophysical characterization and effectiveness on neglected tropical mosquito vectors. Enzym Microb Technol 95:155–163

    Article  CAS  Google Scholar 

  • Govindarajan M, Hoti S, Rajeswary M, Benelli G (2016b) One-step synthesis of polydispersed silver nanocrystals using Malva sylvestris. Parasitol Res 115:2685–2695

    Article  Google Scholar 

  • Govindarajan M, Khater HF, Panneerselvam C, Benelli G (2016c) One-pot fabrication of silver nanocrystals using Nicandra physalodes: a novel route for mosquito vector control with moderate toxicity on non-target water bugs. Res Vet Sci 107:95–101

    Article  CAS  Google Scholar 

  • Govindarajan M, Nicoletti M, Benelli G (2016d) Bio-physical characterization of poly-dispersed silver nanocrystals fabricated using Carissa spinarum: a potent tool against mosquito vectors. J Clust Sci 27:745–761

    Article  CAS  Google Scholar 

  • Govindarajan M, Rajeswary M, Hoti S, Murugan K, Kovendan K, Arivoli S, Benelli G (2016e) Clerodendrum chinense-mediated biofabrication of silver nanoparticles: mosquitocidal potential and acute toxicity against non-target aquatic organisms. J Asia Pac Entomol 19:51–58

    Article  CAS  Google Scholar 

  • Govindarajan M, Rajeswary M, Hoti S, Nicoletti M, Benelli G (2016f) Facile synthesis of mosquitocidal silver nanoparticles using Mussaenda glabra leaf extract: characterisation and impact on non-target aquatic organisms. Nat Prod Res 30:2491–2494

    Article  CAS  Google Scholar 

  • Govindarajan M, Rajeswary M, Muthukumaran U, Hoti SL, Khater HF, Benelli G (2016g) Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: A potent eco-friendly tool against malaria and arbovirus vectors. J Photochem Photobiol B 161:482–489

  • Govindarajan M, Rajeswary M, Veerakumar K, Muthukumaran U, Hoti S, Benelli G (2016h) Green synthesis and characterization of silver nanoparticles fabricated using Anisomeles indica: mosquitocidal potential against malaria, dengue and Japanese encephalitis vectors. Exp Parasitol 161:40–47

    Article  CAS  Google Scholar 

  • Govindarajan M, Rajeswary M, Veerakumar K, Muthukumaran U, Hoti S, Mehlhorn H, Barnard DR, Benelli G (2016i) Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control. Parasitol Res 115:723–733

    Article  Google Scholar 

  • Haldar KM, Haldar B, Chandra G (2013) Fabrication, characterization and mosquito larvicidal bioassay of silver nanoparticles synthesized from aqueous fruit extract of putranjiva, Drypetes roxburghii (Wall.) Parasitol Res 112:1451–1459

    Article  Google Scholar 

  • Hunt RH, Fuseini G, Knowles S, Stiles-Ocran J, Verster R (2011) Insecticide resistance in malaria vector mosquitoes at four localities in Ghana, West Africa. Parasit Vectors 4:107

    Article  Google Scholar 

  • Jaganathan A, Murugan K, Panneerselvam C, Madhiyazhagan P, Dinesh D, Vadivalagan C, Aziz AT, Chandramohan B, Suresh U, Rajaganesh R, Subramaniam J, Nicoletti M, Higuchi A, Alarfaj AA, Munusamy MA, Kumar S, Benelli G (2016) Earthworm-mediated synthesis of silver nanoparticles: a potent tool against hepatocellular carcinoma, pathogenic bacteria, Plasmodium parasites and malaria mosquitoes. Parasitol Int 65:276–284

    Article  CAS  Google Scholar 

  • Jensen M, Mehlhorn H (2009) Seventy-five years of Resochin® in the fight against malaria. Parasitol Res 105(3):609–627

  • Kalimuthu K, Panneerselvam C, Chou C, Tseng L-C, Murugan K, Tsai K-H, Alarfaj AA, Higuchi A, Canale A, Hwang J-S (2017): Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes. Process Safety and Environmental Protection

    Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JS, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3:95–101

    Article  CAS  Google Scholar 

  • Kumar KR, Nattuthurai N, Gopinath P, Mariappan T (2014) Synthesis of eco-friendly silver nanoparticles from Morinda tinctoria leaf extract and its larvicidal activity against Culex quinquefasciatus. Parasitol Res 114:411–417

    Article  Google Scholar 

  • Landfester K, Eisenbla¨tter J, Rothe R (2004) Preparation of polymerizable miniemulsions by ultrasonication. JCT Res 1:65–68

    CAS  Google Scholar 

  • Liu H, Xu Q, Zhang L, Liu N (2005) Chlorpyrifos resistance in mosquito Culex quinquefasciatus. J Med Entomol 42:815–820

    Article  CAS  Google Scholar 

  • Margulis-Goshen K, Magdassi S (2012) Organic nanoparticles from microemulsions: formation and applications. Curr Opin Colloid Interface Sci 17:290–296

    Article  CAS  Google Scholar 

  • Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 10:2212–2224

    Google Scholar 

  • Mehlhorn H, Al-Rasheid KA, Al-Quraishy S, Abdel-Ghaffar F (2012) Research and increase of expertise in arachno-entomology are urgently needed. Parasitol Res 110:259–265

    Article  Google Scholar 

  • Mishra P, Balaji A, Dhal P, Kumar RS, Magdassi S, Margulis K, Tyagi B, Mukherjee A, Chandrasekaran N (2017) Stability of nano-sized permethrin in its colloidal state and its effect on the physiological and biochemical profile of Culex tritaeniorhynchus larvae. Bulletin of entomological research, 1-13

  • Mishra P, Balaji A, Swathy J, Paari AL, Kezhiah M, Tyagi B, Mukherjee A, Chandrasekaran N (2016) Stability assessment of hydro dispersive nanometric permethrin and its biosafety study towards the beneficial bacterial isolate from paddy rhizome. Environ Sci Pollut Res 23:24970–24982

    Article  CAS  Google Scholar 

  • Mishra P, Jerobin J, Thomas J, Mukherjee A, Chandrasekaran N (2014) Study on antimicrobial potential of neem oil nanoemulsion against Pseudomonas aeruginosa infection in Labeo rohita. Biotechnol Appl Bioc 61:611–619

    Article  CAS  Google Scholar 

  • Murrell S, Wu SC, Butler M (2011) Review of dengue virus and the development of a vaccine. Biotechnol Adv 29:239–247

    Article  CAS  Google Scholar 

  • Murugan K, Aruna P, Panneerselvam C, Madhiyazhagan P, Paulpandi M, Subramaniam J, Rajaganesh R, Wei H, Saleh Alsalhi M, Devanesan S, Nicoletti M, Syuhei B, Canale A, Benelli G (2015a) Fighting arboviral diseases: low toxicity on mammalian cells, dengue growth inhibition (in vitro) and mosquitocidal activity of Centroceras clavulatum-synthesized silver nanoparticles. Parasitol Res. doi:10.1007/s00436-015-4783-6

  • Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015b) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138

    Article  CAS  Google Scholar 

  • Murugan K, Benelli G, Suganya A, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Mahesh Kumar P, Subramaniam J, Suresh U (2015c) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 14:2243–2253

    Article  Google Scholar 

  • Murugan K, Vadivalagan C, Karthika P, Panneerselvam C, Paulpandi M, Subramaniam J, Wei H, AlThabiani A, Saleh Alsalhi M, Devanesan S, Nicoletti M, Paramasivan R, Parajulee MN, Benelli G (2015d) DNA barcoding and molecular evolution of mosquito vectors of medical and veterinary importance. Parasitol Res. doi:10.1007/s00436-015-4726-2

  • Murugan K, Dinesh D, Kavithaa K, Paulpandi M, Ponraj T, Saleh Alsalhi M, Devanesan S, Subramaniam J, Rajaganesh R, Wei H, Suresh K, Nicoletti M, Benelli G (2016a) Hydrothermal synthesis of titanium dioxide nanoparticles: mosquitocidal potential and anticancer activity on human breast cancer cells (MCF-7). Parasitol Res 115:1085–1096

    Article  Google Scholar 

  • Murugan K, Wei J, Alsalhi MS, Nicoletti M, Paulpandi M, Samidoss CM, Dinesh D, Chandramohan B, Paneerselvam C, Subramaniam J (2016b) Magnetic nanoparticles are highly toxic to chloroquine-resistant Plasmodium falciparum, dengue virus (DEN-2), and their mosquito vectors. Parasitol Res:1–8

  • Nakajima H (1997) Microemulsions in cosmetics. In: Solans C, Kunieda H (eds) Industrial applications of microemulsions. Marcel Dekker, New York, pp 175–197

    Google Scholar 

  • Oberdorster E, Zhu S, Michelle Blickley T, McClellan-Green P, Haasch ML (2006) Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 44:1112–1120

    Article  Google Scholar 

  • Oliva CF, Damiens D, Benedict MQ (2014) Male reproductive biology of Aedes mosquitoes. Acta Trop 132S:S512–SS19

    Google Scholar 

  • Panneerselvam C, Murugan K, Kovendan K, Mahesh Kumar P (2012) Mosquito larvicidal, pupicidal, adulticidal, and repellent activity of Artemisia nilagirica (Family: Compositae) against Anopheles stephensi and Aedes aegypti. Parasitol Res 111:2241–2251

    Article  Google Scholar 

  • Panneerselvam C, Murugan K, Kovendan K, Mahesh Kumar P, Subramaniam J (2013) Mosquito larvicidal and pupicidal activity of Euphorbia hirta Linn. (Family: Euphorbiaceae) and Bacillus sphaericus against Anopheles stephensi Liston. (Diptera: Culicidae). (Diptera: Culicidae). Asian Pac J Trop Med 6:102–109

    Article  CAS  Google Scholar 

  • Park J, Kim S, Yoo J, Lee JS, Park JW, Jung J (2014) Effect of salinity on acute copper and zinc toxicity to Tigriopus japonicus: the difference between metal ions and nanoparticles. Mar Pollut Bull 85:526–531

    Article  CAS  Google Scholar 

  • Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunke BK (2012b) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and non-target fish Poecillia reticulata. Parasitol Res 111:555–562

    Article  Google Scholar 

  • Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012a) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110:1815–1822

    Article  Google Scholar 

  • Pavel FM (2004) Microemulsion polymerization. J Disper Sci Technol 25:1–16

    Article  CAS  Google Scholar 

  • Pavela R (2015) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crop Prod 76:174–187

    Article  CAS  Google Scholar 

  • Pavela R, Benelli G (2016) Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci 21:1000–1007

    Article  CAS  Google Scholar 

  • Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi A, Kalimuthu K, Thangamani S (2012) Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian-Pacif J Trop Biomed 2:574–580

    Article  CAS  Google Scholar 

  • Poopathi S, De Britto LJ, Praba VL, Mani C, Praveen M (2015) Synthesis of silver nanoparticles from Azadirachta indica—a most effective method for mosquito control. Environ Sci Pollut Res 22:2956–2963

    Article  CAS  Google Scholar 

  • Priyadarshini AK, Murugan K, Panneerselvam C, Ponarulselvam S, Hwang JS, Nicoletti M (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 111:997–100

    Article  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–78

    Article  CAS  Google Scholar 

  • Rajakumar G, Rahuman A (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 118:196–203

    Article  CAS  Google Scholar 

  • Rajan R, Chandran K, Harper SL, Yun SI, Kalaichelvan PT (2015) Plant extract synthesized nanoparticles: an ongoing source of novel biocompatible materials. Ind Crop Prod 70:356–373

    Article  CAS  Google Scholar 

  • Rang MJ, Miller CAC (1999) Spontaneous emulsification of oils containing hydrocarbon, nonionic surfactant, and oleyl alcohol. J Colloid Interface Sci 209:179–192

    Article  CAS  Google Scholar 

  • Robert LL, Olson JK (1989) Susceptibility of female Aedes albopictus from Texasto commonly used adulticides. JAmMosqControlAssoc 5:251–253

    CAS  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108:693–702

    Article  Google Scholar 

  • Shankar S, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag and bimetallic Au core-Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502

    Article  CAS  Google Scholar 

  • Shawky AM, Abdulall AK, Rabeh MA, Abdellatif AO (2014) Enhanced biocidal activities of Citrullus colocynthis aqueous extracts by green nanotechnology. Int J Appl Res Nat Prod 7:1–10

    Google Scholar 

  • Shinoda K, Saito H (1968) The effect of temperature on the phase equilibria and the types of dispersion of the ternary system composed of water, cyclohexane, and nonionic surfactant, J. Colloid Interface Sci. 26 70–74

  • Simon-Sylvestre G, Fournier J-C (1980) Effects of pesticides on the soil microflora. Adv Agron 31:1–92

    Article  Google Scholar 

  • Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma M (2005) Nano-emulsions. Curr Opin Colloid Interface Sci 10:102–110

    Article  CAS  Google Scholar 

  • Sonneville-Aubrun O, Simonnet J-T, L'Alloret F (2004) Nanoemulsions: a new vehicle for skincare products. Adv Colloid Interf Sci 108–109:145–149

  • Subarani S, Sabhanayakam S, Kamaraj C (2013) Studies on the impact of bio synthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 112:487–499

    Article  Google Scholar 

  • Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Mahesh Kumar P, Dinesh D, Chandramohan B, Suresh U, Nicoletti M, Higuchi A, Hwang JS, Kumar S, Alarfaj AA, Munusamy MA, Messing RH, Benelli G (2015) Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach? Environ Sci Pollut Res. doi:10.1007/s11356-015-5253-5

  • Suganya G, Karthi S, Shivakumar MS (2014) Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti. Parasitol Res 113:1673–1679

    Article  Google Scholar 

  • Sugumar S, Clarke S, Nirmala M, Tyagi B, Mukherjee A, Chandrasekaran N (2014) Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bull Entomol Res 104:393–402

    Article  CAS  Google Scholar 

  • Sujitha V, Murugan K, Paulpandi M, Panneerselvam C, Suresh U, Roni M, Nicoletti M, Higuchi A, Madhiyazhagan P, Subramaniam J, Dinesh D, Vadivalagan C, Chandramohan B, Alarfaj AA, Munusamy MA, Barnard DR, Benelli G (2015) Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res. doi:10.1007/s00436-015-4556-2

  • Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562

    Article  Google Scholar 

  • Tadros TF, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nano-emulsions. Adv Colloid Interface Sci 108:109 303–109 318

    Google Scholar 

  • Topp E, Vallaeys T, Soulas G, van ELSAS J, Trevors J, Wellington E (1997) Pesticides: microbial degradation and effects on microorganisms. Modern soil microbiology:547–575

  • Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U (2014) Low-cost and eco-friendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Gasco MR, Priano L, Zara GP (2009): Solid lipid nanoparticles and microemulsions for drug delivery: the CNS. Prog Brain Res 180, 181-192 Aedes aegypti (Diptera: Culicidae). Parasitol Res 113:1775–1785

    Article  Google Scholar 

  • Vezenegho SB, Brooke BD, Hunt RH, Coetzee M, Koekemoer LL (2009) Malaria vector composition and insecticide susceptibility status in Guinea Conakry, West Africa. Med Vet Entomol 23:326–334

    Article  CAS  Google Scholar 

  • Vulule JM, Beach RF, Atieli FK, Roberts JM, Mount DL (1994) Reduced susceptibility of Anopheles gambiae to permethrin associated with the use of permethrin-impregnated bednets and curtains in Kenya. Med Vet Entomol 8:71–75

    Article  CAS  Google Scholar 

  • Walstra P (1996) Emulsion stability. In: Becher P (ed) Encyclopedia of emulsion technology. Marcel Dekker, New York, pp 1–62

    Google Scholar 

  • Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314:230–235

    Article  CAS  Google Scholar 

  • Wattanachai P, Tintanon B (1999) Resistance of Aedes aegypti to chemical compounds in aerosol insecticide products in different areas of Bangkok, Thailand. Commun Dis J 25:188–119

    Google Scholar 

  • WHO (2007) Insecticide-treated mosquito nets: a WHO position statement. Global malaria programme. Geneva, World Health Oraganization

    Google Scholar 

  • WHO (2008) World malaria report 2008. World Health Oraganization, Geneva

    Google Scholar 

  • WHO (2012) Handbook for integrated vector management. World Health Organization

  • WHO (2014a) Malaria. Fact sheet no. 94. World Health Organization, Geneva

  • WHO (2014b) Lymphatic filariasis. Fact sheet no. 102. World Health Organization, Geneva

  • WHO (2015) Dengue and severe dengue. Fact sheet no. 117, Geneva, World Health Organization

  • Zaim M, Aitio A, Nakashima N (2000) Safety of pyrethroid-treated mosquito nets. Med Vet Entomol 14: 1– Geneva

Download references

Acknowledgements

We acknowledge the Vellore Institute of Technology for providing the laboratory space and facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Natarajan Chandrasekaran or Amitava Mukherjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, P., Tyagi, B.K., Chandrasekaran, N. et al. Biological nanopesticides: a greener approach towards the mosquito vector control. Environ Sci Pollut Res 25, 10151–10163 (2018). https://doi.org/10.1007/s11356-017-9640-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9640-y

Keywords

Navigation