Environmental Science and Pollution Research

, Volume 25, Issue 11, pp 10151–10163 | Cite as

Biological nanopesticides: a greener approach towards the mosquito vector control

  • Prabhakar Mishra
  • Brij Kishore Tyagi
  • Natarajan Chandrasekaran
  • Amitava Mukherjee
Plant-borne compounds and nanoparticles: challenges for medicine, parasitology and entomology


Mosquitoes, being a vector for some potentially dreadful diseases, pose a considerable threat to people all around the world. The control over the growth and propagation of mosquitoes comprises conventional pesticides, insect growth regulators and other microbial control agents. However, the usage of these common chemicals and conventional pesticides eventually has a negative impact on human health as well as the environment, which therefore becomes a major concern. The lacuna allows nanotechnology to come into action and exploit nanopesticides. Nanopesticides are majorly divided into two categories—synthetic and biological. Several nanoformulations serve as a promising nanopesticide viz. nanoparticles, e.g. biologically synthesised nanoparticles through plant extracts, nanoemulsions prepared using the essential oils like neem oil and citronella oil and nanoemulsion of conventional pesticides like pyrethroids. These green approaches of synthesising nanopesticides make use of non-toxic and biologically derived compounds and hence are eco-friendly with a better target specificity. Even though there are numerous evidences to show the effectiveness of these nanopesticides, very few efforts have been made to study the possible non-target effects on other organisms prevalent in the aquatic ecosystem. This study focuses on the role of these nanopesticides towards the vector control and its eco-safe property against the other non-target species.


Eco-safety Mosquitoes Nanopesticides Non-target species Vector-borne diseases 



We acknowledge the Vellore Institute of Technology for providing the laboratory space and facilities.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Agnihotri A (1999) Pesticide: safety evaluation and monitoring. Indian Agricultural Research Institute, Division of Agricultural ChemicalsGoogle Scholar
  2. Antonio-Nkondjio C, Fossog BT, Ndo C, Djantio BM, Togouet SZ (2011) Anopheles gambiae distribution and insecticide resistance in the cities of Douala and Yaounde (Cameroon): influence of urban agriculture and pollution. Malar J 10:154: 154Google Scholar
  3. Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472CrossRefGoogle Scholar
  4. Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490CrossRefGoogle Scholar
  5. Amerasan D, Nataraj T, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Benelli G (2015) Myco-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). J Pest Sci. doi: 10.1007/s10340-015-0675-x
  6. Anjali C, Khan SS, Margulis-Goshen K, Magdassi S, Mukherjee A, Chandrasekaran N (2010) Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotox environ safe 73:1932–1936CrossRefGoogle Scholar
  7. Anjali C, Sharma Y, Mukherjee A, Chandrasekaran N (2012) Neem oil (Azadirachta indica) nanoemulsion—a potent larvicidal agent against Culex quinquefasciatus. Pest Manag Sci 68:158–163CrossRefGoogle Scholar
  8. Aurel Y, Jan G, Paul VL, Thijs W, Stephan WFM, Van H, Tom AM, Beumer TA, Robert R, Wijn RR, Rene G, Heideman RG, Vinod S, Johannes S, Kanger JS (2007) Fast ultrasensitive virus detection using a young interferometer sensor. Nano Lett 7:394–397CrossRefGoogle Scholar
  9. Balaji A, Mishra P, Kumar RS, Ashu A, Margulis K, Magdassi S, Mukherjee A, Chandrasekaran N (2015) The environmentally benign form of pesticide in hydrodispersive nanometric form with improved efficacy against adult mosquitoes at low exposure concentrations. Bull Environ Contam Toxicol 95:734–739CrossRefGoogle Scholar
  10. Balkew M, Ibrahim M, Koekemoer LL, Brooke BD, Engers H (2010) Insecticide resistance in Anopheles arabiensis (Diptera: Culicidae) from villages in central, northern and south west Ethiopia and detection of kdr mutation. Parasit Vectors 3:40CrossRefGoogle Scholar
  11. Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395CrossRefGoogle Scholar
  12. Benelli G (2015a) Research in mosquito control: current challenges for a brighter future. Parasitol Res:2801–2805Google Scholar
  13. Benelli G (2015b) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res 114:3201–3212CrossRefGoogle Scholar
  14. Benelli G (2015c) Plant-synthesized nanoparticles: an eco-friendly tool against mosquito vectors? Springer International Publishing Switzerland, H. Mehlhorn (ed.), Nanoparticles in the fight against parasites—parasitology research monographs, doi: 10.1007/978-3-319-25292-6_8 (ISSN: 2192-3671)
  15. Benelli G (2016a) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115(1):23–34. doi: 10.1007/s00436-015-4800-9 CrossRefGoogle Scholar
  16. Benelli G (2016b) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzym Microb Technol 95:58–68CrossRefGoogle Scholar
  17. Benelli G (2016c) Plant-mediated synthesis of nanoparticles: a newer and safer tool against mosquito-borne diseases? Asia Pac J Trop Biomed 6:353–354Google Scholar
  18. Benelli G (2016d) Spread of Zika virus: the key role of mosquito vector control. Asian Pacific Journal of Tropical Biomedicine 6:468–471Google Scholar
  19. Benelli G, Bedini S, Cosci F, Toniolo C, Conti B, Nicoletti M (2015a) Larvicidal and ovi-deterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): a bioactivity survey across production sites. Parasitol Res 114:227–236CrossRefGoogle Scholar
  20. Benelli G, Bedini SFG, Cosci F, Cioni PL, Amira S, Benchikh F, Laouer H, Di Giuseppe G, Conti B (2015b) Mediterranean essential oils as effective weapons against the West Nile vector Culex pipiens and the Echinos to ma intermediate host Physella acuta: what happens around? An acute toxicity survey on non-target mayflies. Parasitol Res 114:1011–1021CrossRefGoogle Scholar
  21. Benelli G, Murugan K, Panneerselvam C, Madhiyazhagan P, Conti B, Nicoletti M (2015c) Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res 114:391–397CrossRefGoogle Scholar
  22. Benelli G, Govindarajan M, Senthilmurugan S, Vijayan P, Kadaikunnan S, Alharbi NS, Khaled JM (2017a) Fabrication of highly effective mosquito nanolarvicides using an Asian plant of ethno-pharmacological interest, Priyangu (Aglaia elaeagnoidea): toxicity on non-target mosquito natural enemies Environmental science and pollution research, 1-11Google Scholar
  23. Benelli G, Pavela R, Maggi F, Petrelli R, Nicoletti M (2017b) Commentary: making green pesticides greener? The potential of plant products for nanosynthesis and pest control. J Cluster Sci, 1-8Google Scholar
  24. Bhatnagar V (2001) Pesticides pollution: trends and perspectives. ICMR Bull 31:87–88Google Scholar
  25. Binks BP (1998) Modern aspects of emulsion science. Royal Society of ChemistryGoogle Scholar
  26. Bowatte G, Perera P, Senevirathne G, Meegaskumbura S, Meegaskumbura M (2013) Tadpoles as dengue mosquito (Aedes aegypti) egg predators. Biol Control 67:469–474CrossRefGoogle Scholar
  27. Breman J (2001) The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. AmJTropMedHyg 64:1–11Google Scholar
  28. Chadee DD, Williams SA, Ottesen EA (2002) Xenomonitoring of Culex quinquefasciatus mosquitoes as a guide for detecting the presence or absence of lymphatic filariasis: a preliminary protocol for mosquito sampling. Ann Trop Med Parasitol 96:47–53CrossRefGoogle Scholar
  29. Czeher C, Labbo R, Arzika I, Duchemin JB (2008) Evidence of increasing LeuPhe knockdown resistance mutation in Anopheles gambiae from Niger following a nationwide long-lasting insecticide-treated nets implementation. Malar J 7:189CrossRefGoogle Scholar
  30. Destrée C, Nagy J (2006) Mechanism of formation of inorganic and organic nanoparticles from microemulsions. Adv Colloid Interf Sci 123:353–367CrossRefGoogle Scholar
  31. Diabate A, Baldet T, Chandre F, Akoobeto M, Guiguemde TR et al (2002) The role of agricultural use of insecticides in resistance to pyrethroids in Anopheles gambiae s.l. in Burkina Faso. Am J Trop Med Hyg 67:617–622CrossRefGoogle Scholar
  32. Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–1529CrossRefGoogle Scholar
  33. Donnelly MJ, Corbel V, Weetman D, Wilding CS, Williamson MS et al (2009) Does kdr genotype predict insecticide-resistance phenotype in mosquitoes? Trends Parasitol 25:213–219CrossRefGoogle Scholar
  34. El-Aasser MS, Sudol ED (2004) Miniemulsions: overview of research and applications. JCT Res 1(1):21–31Google Scholar
  35. Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531CrossRefGoogle Scholar
  36. Floury J, Desrumaux A, Axelos MAV, Legrand J (2003) Effect of high pressure homogenisation on methylcellulose as food emulsifier. J Food Eng 58:227–238CrossRefGoogle Scholar
  37. Fontenille D, Lochouarn L, Diagne N, Sokhna C, Lemasson JJ (1997) High annual and seasonal variations in malaria transmission by anophelines and vector species composition in Dielmo, a holoendemic area in Senegal. Am J Trop Med Hyg 56:247–253CrossRefGoogle Scholar
  38. Forgiarini A, Esquena J, González C, Solans C (2000) Studies of the relation between phase behavior and emulsification methods with nanoemulsion formation. Progr Colloid Polym Sci 115:36–39CrossRefGoogle Scholar
  39. Gasco MR, Priano L, Zara GP (2009) Solid lipid nanoparticles and microemulsions for drug delivery: the CNS. Prog Brain Res 180:181–192CrossRefGoogle Scholar
  40. Govindarajan M (2010) Larvicidal efficacy of Ficus benghalensis L plant leaf extracts against Culex quinquefasciatus Say, Aedes aegypti L and Anopheles stephensi L (Diptera: Culicidae). Eur Rev Med Pharmacol Sci 14:107–111Google Scholar
  41. Govindarajan M, Benelli G (2016a) Facile biosynthesis of silver nanoparticles using Barleria cristata: mosquitocidal potential and biotoxicity on three non-target aquatic organisms. Parasitol Res 115:925–935CrossRefGoogle Scholar
  42. Govindarajan M, Benelli G (2016b) A facile one-pot synthesis of eco-friendly nanoparticles using Carissa carandas: ovicidal and larvicidal potential on malaria. Dengue and Filariasis Mosquito Vectors Journal of Cluster Science:1–22Google Scholar
  43. Govindarajan M, Benelli G (2016c) One-pot green synthesis of silver nanocrystals using Hymenodictyon orixense: a cheap and effective tool against malaria, chikungunya and Japanese encephalitis mosquito vectors? RSC Adv 6:59021–59029CrossRefGoogle Scholar
  44. Govindarajan M, Hoti S, Benelli G (2016a) Facile fabrication of eco-friendly nano-mosquitocides: biophysical characterization and effectiveness on neglected tropical mosquito vectors. Enzym Microb Technol 95:155–163CrossRefGoogle Scholar
  45. Govindarajan M, Hoti S, Rajeswary M, Benelli G (2016b) One-step synthesis of polydispersed silver nanocrystals using Malva sylvestris. Parasitol Res 115:2685–2695CrossRefGoogle Scholar
  46. Govindarajan M, Khater HF, Panneerselvam C, Benelli G (2016c) One-pot fabrication of silver nanocrystals using Nicandra physalodes: a novel route for mosquito vector control with moderate toxicity on non-target water bugs. Res Vet Sci 107:95–101CrossRefGoogle Scholar
  47. Govindarajan M, Nicoletti M, Benelli G (2016d) Bio-physical characterization of poly-dispersed silver nanocrystals fabricated using Carissa spinarum: a potent tool against mosquito vectors. J Clust Sci 27:745–761CrossRefGoogle Scholar
  48. Govindarajan M, Rajeswary M, Hoti S, Murugan K, Kovendan K, Arivoli S, Benelli G (2016e) Clerodendrum chinense-mediated biofabrication of silver nanoparticles: mosquitocidal potential and acute toxicity against non-target aquatic organisms. J Asia Pac Entomol 19:51–58CrossRefGoogle Scholar
  49. Govindarajan M, Rajeswary M, Hoti S, Nicoletti M, Benelli G (2016f) Facile synthesis of mosquitocidal silver nanoparticles using Mussaenda glabra leaf extract: characterisation and impact on non-target aquatic organisms. Nat Prod Res 30:2491–2494CrossRefGoogle Scholar
  50. Govindarajan M, Rajeswary M, Muthukumaran U, Hoti SL, Khater HF, Benelli G (2016g) Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: A potent eco-friendly tool against malaria and arbovirus vectors. J Photochem Photobiol B 161:482–489Google Scholar
  51. Govindarajan M, Rajeswary M, Veerakumar K, Muthukumaran U, Hoti S, Benelli G (2016h) Green synthesis and characterization of silver nanoparticles fabricated using Anisomeles indica: mosquitocidal potential against malaria, dengue and Japanese encephalitis vectors. Exp Parasitol 161:40–47CrossRefGoogle Scholar
  52. Govindarajan M, Rajeswary M, Veerakumar K, Muthukumaran U, Hoti S, Mehlhorn H, Barnard DR, Benelli G (2016i) Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control. Parasitol Res 115:723–733CrossRefGoogle Scholar
  53. Haldar KM, Haldar B, Chandra G (2013) Fabrication, characterization and mosquito larvicidal bioassay of silver nanoparticles synthesized from aqueous fruit extract of putranjiva, Drypetes roxburghii (Wall.) Parasitol Res 112:1451–1459CrossRefGoogle Scholar
  54. Hunt RH, Fuseini G, Knowles S, Stiles-Ocran J, Verster R (2011) Insecticide resistance in malaria vector mosquitoes at four localities in Ghana, West Africa. Parasit Vectors 4:107CrossRefGoogle Scholar
  55. Jaganathan A, Murugan K, Panneerselvam C, Madhiyazhagan P, Dinesh D, Vadivalagan C, Aziz AT, Chandramohan B, Suresh U, Rajaganesh R, Subramaniam J, Nicoletti M, Higuchi A, Alarfaj AA, Munusamy MA, Kumar S, Benelli G (2016) Earthworm-mediated synthesis of silver nanoparticles: a potent tool against hepatocellular carcinoma, pathogenic bacteria, Plasmodium parasites and malaria mosquitoes. Parasitol Int 65:276–284CrossRefGoogle Scholar
  56. Jensen M, Mehlhorn H (2009) Seventy-five years of Resochin® in the fight against malaria. Parasitol Res 105(3):609–627Google Scholar
  57. Kalimuthu K, Panneerselvam C, Chou C, Tseng L-C, Murugan K, Tsai K-H, Alarfaj AA, Higuchi A, Canale A, Hwang J-S (2017): Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes. Process Safety and Environmental Protection Google Scholar
  58. Kim JS, Kuk E, Yu KN, Kim JS, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3:95–101CrossRefGoogle Scholar
  59. Kumar KR, Nattuthurai N, Gopinath P, Mariappan T (2014) Synthesis of eco-friendly silver nanoparticles from Morinda tinctoria leaf extract and its larvicidal activity against Culex quinquefasciatus. Parasitol Res 114:411–417CrossRefGoogle Scholar
  60. Landfester K, Eisenbla¨tter J, Rothe R (2004) Preparation of polymerizable miniemulsions by ultrasonication. JCT Res 1:65–68Google Scholar
  61. Liu H, Xu Q, Zhang L, Liu N (2005) Chlorpyrifos resistance in mosquito Culex quinquefasciatus. J Med Entomol 42:815–820CrossRefGoogle Scholar
  62. Margulis-Goshen K, Magdassi S (2012) Organic nanoparticles from microemulsions: formation and applications. Curr Opin Colloid Interface Sci 17:290–296CrossRefGoogle Scholar
  63. Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 10:2212–2224Google Scholar
  64. Mehlhorn H, Al-Rasheid KA, Al-Quraishy S, Abdel-Ghaffar F (2012) Research and increase of expertise in arachno-entomology are urgently needed. Parasitol Res 110:259–265CrossRefGoogle Scholar
  65. Mishra P, Balaji A, Dhal P, Kumar RS, Magdassi S, Margulis K, Tyagi B, Mukherjee A, Chandrasekaran N (2017) Stability of nano-sized permethrin in its colloidal state and its effect on the physiological and biochemical profile of Culex tritaeniorhynchus larvae. Bulletin of entomological research, 1-13Google Scholar
  66. Mishra P, Balaji A, Swathy J, Paari AL, Kezhiah M, Tyagi B, Mukherjee A, Chandrasekaran N (2016) Stability assessment of hydro dispersive nanometric permethrin and its biosafety study towards the beneficial bacterial isolate from paddy rhizome. Environ Sci Pollut Res 23:24970–24982CrossRefGoogle Scholar
  67. Mishra P, Jerobin J, Thomas J, Mukherjee A, Chandrasekaran N (2014) Study on antimicrobial potential of neem oil nanoemulsion against Pseudomonas aeruginosa infection in Labeo rohita. Biotechnol Appl Bioc 61:611–619CrossRefGoogle Scholar
  68. Murrell S, Wu SC, Butler M (2011) Review of dengue virus and the development of a vaccine. Biotechnol Adv 29:239–247CrossRefGoogle Scholar
  69. Murugan K, Aruna P, Panneerselvam C, Madhiyazhagan P, Paulpandi M, Subramaniam J, Rajaganesh R, Wei H, Saleh Alsalhi M, Devanesan S, Nicoletti M, Syuhei B, Canale A, Benelli G (2015a) Fighting arboviral diseases: low toxicity on mammalian cells, dengue growth inhibition (in vitro) and mosquitocidal activity of Centroceras clavulatum-synthesized silver nanoparticles. Parasitol Res. doi: 10.1007/s00436-015-4783-6
  70. Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015b) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138CrossRefGoogle Scholar
  71. Murugan K, Benelli G, Suganya A, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Mahesh Kumar P, Subramaniam J, Suresh U (2015c) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 14:2243–2253CrossRefGoogle Scholar
  72. Murugan K, Vadivalagan C, Karthika P, Panneerselvam C, Paulpandi M, Subramaniam J, Wei H, AlThabiani A, Saleh Alsalhi M, Devanesan S, Nicoletti M, Paramasivan R, Parajulee MN, Benelli G (2015d) DNA barcoding and molecular evolution of mosquito vectors of medical and veterinary importance. Parasitol Res. doi: 10.1007/s00436-015-4726-2
  73. Murugan K, Dinesh D, Kavithaa K, Paulpandi M, Ponraj T, Saleh Alsalhi M, Devanesan S, Subramaniam J, Rajaganesh R, Wei H, Suresh K, Nicoletti M, Benelli G (2016a) Hydrothermal synthesis of titanium dioxide nanoparticles: mosquitocidal potential and anticancer activity on human breast cancer cells (MCF-7). Parasitol Res 115:1085–1096CrossRefGoogle Scholar
  74. Murugan K, Wei J, Alsalhi MS, Nicoletti M, Paulpandi M, Samidoss CM, Dinesh D, Chandramohan B, Paneerselvam C, Subramaniam J (2016b) Magnetic nanoparticles are highly toxic to chloroquine-resistant Plasmodium falciparum, dengue virus (DEN-2), and their mosquito vectors. Parasitol Res:1–8Google Scholar
  75. Nakajima H (1997) Microemulsions in cosmetics. In: Solans C, Kunieda H (eds) Industrial applications of microemulsions. Marcel Dekker, New York, pp 175–197Google Scholar
  76. Oberdorster E, Zhu S, Michelle Blickley T, McClellan-Green P, Haasch ML (2006) Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 44:1112–1120CrossRefGoogle Scholar
  77. Oliva CF, Damiens D, Benedict MQ (2014) Male reproductive biology of Aedes mosquitoes. Acta Trop 132S:S512–SS19Google Scholar
  78. Panneerselvam C, Murugan K, Kovendan K, Mahesh Kumar P (2012) Mosquito larvicidal, pupicidal, adulticidal, and repellent activity of Artemisia nilagirica (Family: Compositae) against Anopheles stephensi and Aedes aegypti. Parasitol Res 111:2241–2251CrossRefGoogle Scholar
  79. Panneerselvam C, Murugan K, Kovendan K, Mahesh Kumar P, Subramaniam J (2013) Mosquito larvicidal and pupicidal activity of Euphorbia hirta Linn. (Family: Euphorbiaceae) and Bacillus sphaericus against Anopheles stephensi Liston. (Diptera: Culicidae). (Diptera: Culicidae). Asian Pac J Trop Med 6:102–109CrossRefGoogle Scholar
  80. Park J, Kim S, Yoo J, Lee JS, Park JW, Jung J (2014) Effect of salinity on acute copper and zinc toxicity to Tigriopus japonicus: the difference between metal ions and nanoparticles. Mar Pollut Bull 85:526–531CrossRefGoogle Scholar
  81. Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunke BK (2012b) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and non-target fish Poecillia reticulata. Parasitol Res 111:555–562CrossRefGoogle Scholar
  82. Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012a) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110:1815–1822CrossRefGoogle Scholar
  83. Pavel FM (2004) Microemulsion polymerization. J Disper Sci Technol 25:1–16CrossRefGoogle Scholar
  84. Pavela R (2015) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crop Prod 76:174–187CrossRefGoogle Scholar
  85. Pavela R, Benelli G (2016) Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci 21:1000–1007CrossRefGoogle Scholar
  86. Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi A, Kalimuthu K, Thangamani S (2012) Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian-Pacif J Trop Biomed 2:574–580CrossRefGoogle Scholar
  87. Poopathi S, De Britto LJ, Praba VL, Mani C, Praveen M (2015) Synthesis of silver nanoparticles from Azadirachta indica—a most effective method for mosquito control. Environ Sci Pollut Res 22:2956–2963CrossRefGoogle Scholar
  88. Priyadarshini AK, Murugan K, Panneerselvam C, Ponarulselvam S, Hwang JS, Nicoletti M (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 111:997–100CrossRefGoogle Scholar
  89. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–78CrossRefGoogle Scholar
  90. Rajakumar G, Rahuman A (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 118:196–203CrossRefGoogle Scholar
  91. Rajan R, Chandran K, Harper SL, Yun SI, Kalaichelvan PT (2015) Plant extract synthesized nanoparticles: an ongoing source of novel biocompatible materials. Ind Crop Prod 70:356–373CrossRefGoogle Scholar
  92. Rang MJ, Miller CAC (1999) Spontaneous emulsification of oils containing hydrocarbon, nonionic surfactant, and oleyl alcohol. J Colloid Interface Sci 209:179–192CrossRefGoogle Scholar
  93. Robert LL, Olson JK (1989) Susceptibility of female Aedes albopictus from Texasto commonly used adulticides. JAmMosqControlAssoc 5:251–253Google Scholar
  94. Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108:693–702CrossRefGoogle Scholar
  95. Shankar S, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag and bimetallic Au core-Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502CrossRefGoogle Scholar
  96. Shawky AM, Abdulall AK, Rabeh MA, Abdellatif AO (2014) Enhanced biocidal activities of Citrullus colocynthis aqueous extracts by green nanotechnology. Int J Appl Res Nat Prod 7:1–10Google Scholar
  97. Shinoda K, Saito H (1968) The effect of temperature on the phase equilibria and the types of dispersion of the ternary system composed of water, cyclohexane, and nonionic surfactant, J. Colloid Interface Sci. 26 70–74Google Scholar
  98. Simon-Sylvestre G, Fournier J-C (1980) Effects of pesticides on the soil microflora. Adv Agron 31:1–92CrossRefGoogle Scholar
  99. Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma M (2005) Nano-emulsions. Curr Opin Colloid Interface Sci 10:102–110CrossRefGoogle Scholar
  100. Sonneville-Aubrun O, Simonnet J-T, L'Alloret F (2004) Nanoemulsions: a new vehicle for skincare products. Adv Colloid Interf Sci 108–109:145–149Google Scholar
  101. Subarani S, Sabhanayakam S, Kamaraj C (2013) Studies on the impact of bio synthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 112:487–499CrossRefGoogle Scholar
  102. Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Mahesh Kumar P, Dinesh D, Chandramohan B, Suresh U, Nicoletti M, Higuchi A, Hwang JS, Kumar S, Alarfaj AA, Munusamy MA, Messing RH, Benelli G (2015) Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach? Environ Sci Pollut Res. doi: 10.1007/s11356-015-5253-5
  103. Suganya G, Karthi S, Shivakumar MS (2014) Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti. Parasitol Res 113:1673–1679CrossRefGoogle Scholar
  104. Sugumar S, Clarke S, Nirmala M, Tyagi B, Mukherjee A, Chandrasekaran N (2014) Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bull Entomol Res 104:393–402CrossRefGoogle Scholar
  105. Sujitha V, Murugan K, Paulpandi M, Panneerselvam C, Suresh U, Roni M, Nicoletti M, Higuchi A, Madhiyazhagan P, Subramaniam J, Dinesh D, Vadivalagan C, Chandramohan B, Alarfaj AA, Munusamy MA, Barnard DR, Benelli G (2015) Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res. doi: 10.1007/s00436-015-4556-2
  106. Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562CrossRefGoogle Scholar
  107. Tadros TF, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nano-emulsions. Adv Colloid Interface Sci 108:109 303–109 318Google Scholar
  108. Topp E, Vallaeys T, Soulas G, van ELSAS J, Trevors J, Wellington E (1997) Pesticides: microbial degradation and effects on microorganisms. Modern soil microbiology:547–575Google Scholar
  109. Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U (2014) Low-cost and eco-friendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Gasco MR, Priano L, Zara GP (2009): Solid lipid nanoparticles and microemulsions for drug delivery: the CNS. Prog Brain Res 180, 181-192 Aedes aegypti (Diptera: Culicidae). Parasitol Res 113:1775–1785CrossRefGoogle Scholar
  110. Vezenegho SB, Brooke BD, Hunt RH, Coetzee M, Koekemoer LL (2009) Malaria vector composition and insecticide susceptibility status in Guinea Conakry, West Africa. Med Vet Entomol 23:326–334CrossRefGoogle Scholar
  111. Vulule JM, Beach RF, Atieli FK, Roberts JM, Mount DL (1994) Reduced susceptibility of Anopheles gambiae to permethrin associated with the use of permethrin-impregnated bednets and curtains in Kenya. Med Vet Entomol 8:71–75CrossRefGoogle Scholar
  112. Walstra P (1996) Emulsion stability. In: Becher P (ed) Encyclopedia of emulsion technology. Marcel Dekker, New York, pp 1–62Google Scholar
  113. Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314:230–235CrossRefGoogle Scholar
  114. Wattanachai P, Tintanon B (1999) Resistance of Aedes aegypti to chemical compounds in aerosol insecticide products in different areas of Bangkok, Thailand. Commun Dis J 25:188–119Google Scholar
  115. WHO (2007) Insecticide-treated mosquito nets: a WHO position statement. Global malaria programme. Geneva, World Health OraganizationGoogle Scholar
  116. WHO (2008) World malaria report 2008. World Health Oraganization, GenevaGoogle Scholar
  117. WHO (2012) Handbook for integrated vector management. World Health OrganizationGoogle Scholar
  118. WHO (2014a) Malaria. Fact sheet no. 94. World Health Organization, GenevaGoogle Scholar
  119. WHO (2014b) Lymphatic filariasis. Fact sheet no. 102. World Health Organization, GenevaGoogle Scholar
  120. WHO (2015) Dengue and severe dengue. Fact sheet no. 117, Geneva, World Health OrganizationGoogle Scholar
  121. Zaim M, Aitio A, Nakashima N (2000) Safety of pyrethroid-treated mosquito nets. Med Vet Entomol 14: 1– GenevaGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Centre for NanobiotechnologyVIT UniversityVelloreIndia
  2. 2.Department of Zoology & Environment SciencePunjabi UniversityPatialaIndia

Personalised recommendations