Environmental Science and Pollution Research

, Volume 25, Issue 6, pp 5254–5268 | Cite as

Biogeochemical and engineered barriers for preventing spread of contaminants

  • Edita Baltrėnaitė
  • Arvydas Lietuvninkas
  • Pranas Baltrėnas
Tools, techniques and technologies for pollution prevention, control and resource recovery


The intensive industrial development and urbanization, as well as the negligible return of hazardous components to the deeper layers of the Earth, increases the contamination load on the noosphere (i.e., the new status of the biosphere, the development of which is mainly controlled by the conscious activity of a human being). The need for reducing the spread and mobility of contaminants is growing. The insights into the role of the tree in the reduction of contaminant mobility through its life cycle are presented to show an important function performed by the living matter and its products in reducing contamination. For maintaining the sustainable development, natural materials are often used as the media in the environmental protection technologies. However, due to increasing contamination intensity, the capacity of natural materials is not sufficiently high. Therefore, the popularity of engineered materials, such as biochar which is the thermochemically modified lignocellulosic product, is growing. The new approaches, based on using the contaminant footprint, as well as natural (biogeochemical) and engineered barriers for reducing contaminant migration and their application, are described in the paper.


Biochar Contaminant footprint Immobilization Life cycle Tree 


  1. Baltrėnaitė E, Lietuvninkas A, Baltrėnas P (2012) Use of dynamic factors to assess metal uptake and transfer in plants—example of trees. Water Air Soil Pollut 223(7):4297–4306CrossRefGoogle Scholar
  2. Baltrėnaitė E, Baltrėnas P, Lietuvninkas A, Šerevičienė V, Zuokaitė E (2014) Integrated evaluation of aerogenic pollution by air-transported heavy metals (Pb, Cd, Ni, Zn, Mn and Cu) in the analysis of the main deposit media. Environ Sci Pollut Res 21(1):299–313CrossRefGoogle Scholar
  3. Baltrėnaitė E, Baltrėnas P, Lietuvninkas A (2016a) The sustainable role of the tree in environmental protection technologies. Monograph. Springer. 360 pGoogle Scholar
  4. Baltrėnaitė E, Lietuvninkas A, Baltrėnas P (2016b) Modelling the balance of metals in the amended soil for the case of ‘atmosphere-plant-soil’ system. Environ Model Assess 21(5):577–590CrossRefGoogle Scholar
  5. Baltrėnaitė E, Baltrėnas P, Bhatnagar A, Vilppo T, Selenius M, Koistinen A, Dahl M, Penttinen O-P (2017) A multicomponent approach to using waste-derived biochar in biofiltration: a case study based on dissimilar types of waste. Int Biodeterior Biodegrad 119:565–576CrossRefGoogle Scholar
  6. Baltrėnas P, Baltrėnaitė E, Spudulis E (2015) Biochar from pine and birch morphology and pore structure change by treatment in biofilter. Water Air Soil Pollut 226(69):1–14Google Scholar
  7. Baltrėnas P, Baltrėnaitė E, Kleiza J, Švedienė J (2016) A biochar-based medium in the biofiltration system: removal efficiency, microorganism propagation and the medium penetration modeling. J Air Waste Manag Assoc 66(7):673–686CrossRefGoogle Scholar
  8. Chanturiya V, Masloboev V, Makarov D, Nesterov D, Bajurova J, Svetlov A, Menshikov Y (2014) Geochemical barriers for environment protection and recovery of nonferrous metals. J Environ Sci Health A Tox Hazard Subst Environ Eng 49(12):1409–1415CrossRefGoogle Scholar
  9. Chen B, Zhou D, Zhu L (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochar of pine needles with different pyrolytic temperatures. Environ Sci Technol 42:5137–5143CrossRefGoogle Scholar
  10. Dobrovolsky VV (2008) Geokhinicheskoe zemledekie. Gumanit. izd. tsentr, VLADOS, Moskva, 207 p (in Russian)Google Scholar
  11. Dūdaitė J, Baltrėnaitė E, Ubeda X, Tamkevičiūtė M (2013) Temperature effects on the ash properties of pine and maple leaf litter. A laboratory study. Environ Eng Manag J 12(11):1535–1544Google Scholar
  12. Fodor F (2002) Physiological response of vascular plants to heavy metals. In: Prasad MNV, Strzalka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer Academic Publishers, Netherlands, pp 149–177CrossRefGoogle Scholar
  13. Freanzle S, Markert B, Wuenschmann S (2012) Introduction to environmental engineering. Wiley-VCN. 420 pGoogle Scholar
  14. Gajalakshmi S, Abbasi SA (2008) Solid waste management by composting: state of the art. Crit Rev Environ Sci Technol 38:311–400CrossRefGoogle Scholar
  15. Gietl JK, Lawrence R, Thorpe AJ, Harrison RM (2010) Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmos Environ 44:141–146CrossRefGoogle Scholar
  16. Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319(5864):756–760CrossRefGoogle Scholar
  17. Hilber I, Bastos A, Loureiro S, Soja G, Marsz A, Cornelissen G, Bucheli T (2017) The different faces of biochar: contamination risk versus remediation tool. J Environ Eng Landsc. AcceptedGoogle Scholar
  18. Kabir MDI, Daly E, Maggi F (2014) The review of ion and metal pollutants in urban green water infrastructures. Sci Total Environ 470–471:695–706CrossRefGoogle Scholar
  19. Kennedy C, Cuddihy J, Engel-Yan J (2007) The changing metabolism of cities. J Ind Ecol 11(2):43–59CrossRefGoogle Scholar
  20. Kern J, Tammeorg P, Shanskiy M, Sakrabani R, Knicker H, Kammann C, Tuhkanen E-M, Smidt G, Prasad M, Kari T, Sohi S, Gasco G, Steiner Ch, Glaser B (2017) Synergistic use of peat and charred material in growing media—an option to reduce the pressure on peatlands? J Environ Eng Landsc. AcceptedGoogle Scholar
  21. Komkienė J, Baltrėnaitė E (2016) Biochar as adsorbent for removal of heavy metal ions (cadmium(II), copper(II), lead(II), zinc(II)) from aqueous phase. Int J Environ Sci Technol 13(2):471–482CrossRefGoogle Scholar
  22. Krastinytė V, Baltrėnaitė E, Lietuvninkas A (2013) Analysis of snow-cap pollution for the air quality assessment in the vicinity of oil refinery. Environ Technol 34(6):757–763CrossRefGoogle Scholar
  23. Krull ES, Baldock JA, Skjemstad JO, Smernik RJ (2010) Characteristics of biochar: organo–chemical properties. In: Joseph S, Lehmann J (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 53–65Google Scholar
  24. Ledoux F, Kfoury A, Delmaire G, Roussel G, El Zein A, Courcot D (2017) Contributions of local and regional anthropogenic sources of metals in PM2.5 at an urban site in northern France. Chemosphere 181:713–724CrossRefGoogle Scholar
  25. Lietuvninkas A (2012) Aplinkos geochemija. Technika, Vilnius 310 pCrossRefGoogle Scholar
  26. Lin T, Gibson V, Cui S, Yu C-P, Chen S (2014) Managing urban nutrient biogeochemistry for sustainable urbanization. Environ Pollut 192:144–250CrossRefGoogle Scholar
  27. Mancinelli E, Baltrėnaitė E, Baltrėnas P, Paliulis D, Passerini G, Almas AR (2015) Trace metal concentration and speciation in storm water runoff on impervious surfaces. J Environ Eng Landsc Manag 23(1):15–27CrossRefGoogle Scholar
  28. Mancinelli E, Baltrėnaitė E, Baltrėnas P, Paliulis D, Passerini G (2016) Trace metals in biochars from biodegradable by-products of industrial processes. Water Air Soil Pollut 227(6):1–21CrossRefGoogle Scholar
  29. Mehr MR, Keshavarzi B, Moore F, Sharifi R, Lahijanzadeh A, Kermani M (2017) Distribution, source identification and health risk assessment of soil heavy metals in urban areas of Isfahan province, Iran. J Afr Earth Sci 132:16–26CrossRefGoogle Scholar
  30. Meyer S, Ines V, Schmidt H-P, Soja G, Someus E, Shackley S, Verheijen F, Glaser B (2017) Biochar standardization and legislation harmonization. J Environ Eng Landsc. AcceptedGoogle Scholar
  31. Newman P (1999) Sustainability and cities: extending the metabolism model. Landsc Urban Plan 44(4):219–226CrossRefGoogle Scholar
  32. Oustriere N, Marchand L, Rosette G, Friesl-Hanl W, Mench M (2017) Wood-derived-biochar combined with compost or iron grit for in situ stabilization of Cd, Pb, and Zn in a contaminated soil. Environ Sci Pollut Res 24:7468–7481CrossRefGoogle Scholar
  33. Peng C, Ouyang Z, Wang M, Chen W, Li X, Crittenden JC (2013) Assessing the combined risks of PAHs and metals in urban soils by urbanization indicators. Environ Pollut 178:426–432CrossRefGoogle Scholar
  34. Perelman AI (1967) Geochemistry of epigenesis. Plenum Press, New York 213 pCrossRefGoogle Scholar
  35. Pundytė N, Baltrėnaitė E, Pereira P, Paliulis D (2011) Variation of metal uptake by Pinus sylvestris L. J Environ Eng Landsc Manag 19(1):34–43CrossRefGoogle Scholar
  36. Radzevičius A, Kadūnas V (2006) Influence of atmospheric transportation of heavy metals on their values in depositional environments of West Lithuania. Geologija 54:1–7Google Scholar
  37. Rizwan M, Ali S, Qayyum MF, Ibrahim M, Zia-ur-Rehman M, Abbas T, Ok Y-S (2016) Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ Sci Pollut Res 23:2230–2248CrossRefGoogle Scholar
  38. Salameh D, Detournay A, Pey J, Pérez N, Liguori F, Saraga D, Bove MC, Brotto P, Cassola F, Massabò D, Latella A, Pillon S, Formenton G, Patti S, Armengaud A, Piga D, Jaffrezo JL, Bartzis J, Tolis E, Prati P, Querol X, Wortham H, Marchand N (2015) PM2.5 chemical composition in five European Mediterranean cities: a 1-year study. Atmos Res 155:102–117CrossRefGoogle Scholar
  39. Seader JD, Henley EJ (2006) Separation process principles. John Wiley & Sons. 756 pGoogle Scholar
  40. Tammeorg P, Bastos A, Jeffery S, Rees F, Kern J, Graber E, Ventura M, Kibblewhite M, Amaro A, Budai A, Cordovil C, Domene X, Gardi C, Gascó G, Horák J, Kammann C, Kondrlova E, Laird D, Loureiro S, Prasad M, Prodana M, Puga A, Ruysschaert G, Sas-Paszt L, Silva F, Teixeira W, Tonon G, Delle V, Zavalloni C, Glaser B, Verheijen F, Martins M (2017) Biochars in soils: towards the required level of scientific understanding. J Environ Eng Landsc. AcceptedGoogle Scholar
  41. UNFPA (2007) State of world population 2007: unleashing the potential of urban growth. Available at
  42. UNPD (2002) World urbanization prospects. United Nations population division []
  43. USGS (2008) The global flows of metals and minerals. 15 pGoogle Scholar
  44. USGS (2017) National minerals information center. Commodity statistics and information. Available at
  45. Vaitkutė D, Baltrėnaitė E, Booth C, Fullen MA (2010) Does sewage sludge amendment to soil enhance the development of Silver birch and Scots pine? Hung Geogr Bull 59(4):393–410Google Scholar
  46. WB (2012) The world data bank: world development indicators and global development finance. Available at
  47. Wolman A (1965) Metabolism of cities. Sci Am 213(3):179CrossRefGoogle Scholar
  48. Zárubová P, Hejcman M, Vondráčková S, Mrnka L, Száková J, Tlustoš P (2015) Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements. Environ Sci Pollut Res 22:18801–18813CrossRefGoogle Scholar
  49. Zheng R, Chen Z, Cai C, Tie B, Liu X, Reid BJ, Huang Q, Lei M, Sun G, Baltrėnaitė E (2015) Mitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment—a field experiment in Hunan, China. Environ Sci Pollut Res 22(14):11097–11108CrossRefGoogle Scholar
  50. Zhizhayev AM, Bragin VI, Mikhailov AG (2002) Method of localization of technogenic copper. RF patent 2182131, May 10 2002Google Scholar
  51. Zhou D, Zhao S, Zhang L, Sun G, Liu Y (2015) The footprint of urban heat island effect in China. Sci Rep 5:11160CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Edita Baltrėnaitė
    • 1
  • Arvydas Lietuvninkas
    • 1
  • Pranas Baltrėnas
    • 1
  1. 1.Vilnius Gediminas Technical UniversityVilnius-40Lithuania

Personalised recommendations