Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 6, pp 5086–5094 | Cite as

Characterization of ferromagnetic sludge-based activated carbon and its application in catalytic ozonation of p-chlorobenzoic acid

  • Siying Lu
  • Yongze Liu
  • Li Feng
  • Zhongen Sun
  • Liqiu Zhang
Tools, techniques and technologies for pollution prevention, control and resource recovery

Abstract

In order to solve the separation problem of powdered sludge-based activated carbon (SAC), a series of novel ferromagnetic sludge-based activated carbons (FMSACs, with different iron content 2.3, 4.3, and 9.5 wt%) with a good magnetic separation ability were prepared through co-precipitation method in this study. The structure and physicochemical properties of FMSACs and their catalytic ozonation performance on the removal of p-chlorobenzoic acid (p-CBA) were investigated. The saturation magnetization (Ms) of FMSACs was determined in the range of 0.3674–5.7992 emu g−1, and experiments confirmed that these FMSACs could be easily separated by magnetic fields. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis indicated that magnetite and maghemite were the main magnetic phases in FMSACs. Comparing with ozonation alone and SAC catalytic ozonation, the presence of 2.3 wt% – FMSAC improved the degradation of p-CBA during catalytic ozonation from 44 and 70 to 80%. The tertiary butanol inhibition experiment indicated that FMSACs catalytic ozonation process followed hydroxyl radical reaction mechanism. Furthermore, after six repetitive catalytic ozonation runs, 2.3 wt% – FMSAC still showed relatively high catalytic activity for the removal of p-CBA. Consequently, the novel FMSACs with magnetic separation ability and catalytic performance provide a practical pathway for the sludge utilization.

Keywords

Ferromagnetic sludge-based activated carbon Catalytic ozonation p-Chlorobenzoic acid Magnetic separation Sludge disposal Magnetic catalyst 

Notes

Acknowledgements

This work was supported by Education Committee of Beijing, China (2015GJ-02) and National Natural Science Foundation of China (51178046).

References

  1. Alvárez PM, García-Araya JF, Beltrán FJ, Giráldez I, Jaramillo J, Gómez-Serrano V (2006) The influence of various factors on aqueous ozone decomposition by granular activated carbons and the development of a mechanistic approach. Carbon 44:3102–3112. doi: 10.1016/j. carbon.2006.03.016 CrossRefGoogle Scholar
  2. Bader H, Hoigné J (1981) Determination of ozone in water by the indigo method. Water Res 15:449–456. doi: 10.1016/0043-1345(81)90054-3 CrossRefGoogle Scholar
  3. Bandosz TJ, Block K (2006) Effect of pyrolysis temperature and time on catalytic performance of sewage sludge/industrial sludge-based composite adsorbents. Appl Catal B Environ 67:77–85. doi: 10.1016/j.apcatb.2006.04.006 CrossRefGoogle Scholar
  4. Bonder MJ, Huang Y, Hadjipanayis GC (2006) Magnetic Nanoparticles. Springer USGoogle Scholar
  5. Briceño S et al (2014) NiFe 2 O 4 /activated carbon nanocomposite as magnetic material from petcoke. J Magn Magn Mater 360:67–72. doi: 10.1016/j.jmmm.2014.01.073 CrossRefGoogle Scholar
  6. Casas L, Roig A, Molins E, Grenèche JM, Asenjo J, Tejada J (2002) Iron oxide nanoparticles hosted in silica aerogels. Appl Phys A 74:591–597. doi: 10.1007/s003390100948 CrossRefGoogle Scholar
  7. Dehouli H, Chedeville O, Cagnon B, Caqueret V, Porte C (2010) Influences of pH, temperature and activated carbon properties on the interaction ozone/activated carbon for a wastewater treatment process. Desalination 254:12–16. doi: 10.1016/j.desal.2009.12.021 CrossRefGoogle Scholar
  8. Ghanbari D, Salavati-Niasari M (2015) Synthesis of urchin-like CdS-Fe 3 O 4 nanocomposite and its application in flame retardancy of magnetic cellulose acetate. J Ind Eng Chem 24:284–292. doi: 10.1016/j.jiec.2014.09.043 CrossRefGoogle Scholar
  9. Guiza M, Ouederni A, Ratel A (2010) Decomposition of dissolved ozone in the presence of activated carbon: an experimental study. Ozone Sci Eng 2004:299–307. doi: 10.1080/01919510490456015 Google Scholar
  10. Huang R, Yan H, Li L, Deng D, Shu Y, Zhang Q (2011) Catalytic activity of Fe/SBA-15 for ozonation of dimethyl phthalate in aqueous solution. Appl Catal B Environ 106:264–271. doi: 10.1016/j.apcatb.2011.05.041 Google Scholar
  11. Huang Y, Cui C, Zhang D, Li L, Pan D (2015) Heterogeneous catalytic ozonation of dibutyl phthalate in aqueous solution in the presence of iron-loaded activated carbon. Chemosphere 119c:295–301. doi: 10.1016/j.chemosphere.2014.06.060 CrossRefGoogle Scholar
  12. Hwang HR, Choi WJ, Kim TJ, Kim JS, Oh KJ (2008) The preparation of an adsorbent from mixtures of sewage sludge and coal-tar pitch using an alkaline hydroxide activation agent. J Anal Appl Pyrol 83:220–226. doi: 10.1016/j.jaap.2008.09.011 CrossRefGoogle Scholar
  13. Jia Z, Peng K, Li Y, Zhu R (2011) Preparation and application of novel magnetically separable γ-Fe 2 O 3/activated carbon sphere adsorbent. Mater Sci Eng B 176:861–865. doi: 10.1016/j.mseb.2011.04.010 CrossRefGoogle Scholar
  14. Jing Z, Wu S (2004) Synthesis, characterization and magnetic properties of γ-Fe 2 O 3 nanoparticles via a non-aqueous medium. J Solid State Chem 177:1213–1218. doi: 10.1016/j. jssc.2003.10.034 CrossRefGoogle Scholar
  15. Kwon JH, Wilson LD, Sammynaiken R (2006) Synthesis and characterization of magnetite and activated carbon binary composites. Synth Met 197:3. doi: 10.1016/j. jssc.2003.10.034 Google Scholar
  16. Lan B, Huang R, Li L, Yan H, Liao G, Wang X, Zhang Q (2013) Catalytic ozonation of p-chlorobenzoic acid in aqueous solution using Fe-MCM-41 as catalyst. Chem Eng J 219:346–354. doi: 10.1016/j.cej.2012.12.083 CrossRefGoogle Scholar
  17. Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113. doi: 10.1107/S 0021889878012844 CrossRefGoogle Scholar
  18. Li L, Ye W, Zhang Q, Sun F, Ping L, Li X (2009) Catalytic ozonation of dimethyl phthalate over cerium supported on activated carbon. J Hazard Mater 170:411–416. doi: 10.1016/j.jhazmat.2009.04.081 CrossRefGoogle Scholar
  19. Lim H, Lee J, Jin S, Kim J, Yoon J, Hyeon T (2006) Highly active heterogeneous Fenton catalyst using iron oxide nanoparticles immobilized in alumina coated mesoporous silica. Chem Commun 4:463–465. doi: 10.1039/b513517f CrossRefGoogle Scholar
  20. Lin G, Zhu N, Zhou P (2012) Preparation of sludge derived magnetic porous carbon and their application in Fenton-like degradation of 1-diazo-2-naphthol-4-sulfonic acid. Bioresour Technol 118:638–642. doi: 10.1016/j.biortech.2012.05.102 CrossRefGoogle Scholar
  21. Lin G, Zhu N, Guo H, Huang S, Lou Z, Yuan H (2013) Adsorption and Fenton-like degradation of naphthalene dye intermediate on sewage sludge derived porous carbon. J Hazard Mater 246–247:145–153. doi: 10.1016/j.hazmat.2012.12.012 Google Scholar
  22. Ling W, Qiang Z, Shi Y, Zhang T, Dong B (2011) Fe(III)-loaded activated carbon as catalyst to improve omethoate degradation by ozone in water. J Mol Catal A Chem 342-343:23–29. doi: 10.1016/j.molcata.2011.04.005 CrossRefGoogle Scholar
  23. Mizera J et al (2012) Au/FeO x catalysts of different degree of iron oxide reduction. Catal Today 187:20–29. doi: 10.1016/j.cattod.2012.01.031 CrossRefGoogle Scholar
  24. Muruganandham M, Wu JJ (2008) Synthesis, characterization and catalytic activity of easily recyclable zinc oxide nanobundles. Systems Man & Cybernetics Part B Cybernetics IEEE Transactions on 80:32–41. doi: 10.1016/j.apcatb.2007.11.006 Google Scholar
  25. Oliveira LCA, Rios RVRA, Fabris JD, Garg V, Sapag K, Lago RM (2002) Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon 40:2177–2183. doi: 10.1016/S0008-6223(02)00076-3 CrossRefGoogle Scholar
  26. Pollard SJT, Fowler GD, Sollars CJ, Perry R (1992) Low-cost adsorbents for waste and wastewater treatment: a review. Sci Total Environ 116:31–52. doi: 10.1016/0048-9697(92)9 0363-W CrossRefGoogle Scholar
  27. Qian Q, Mochidzuki K, Fujii T, Sakoda A (2009) Removal of copper from aqueous solution using iron-containing adsorbents derived from methane fermentation sludge. J Hazard Mater 172:1137–1144. doi: 10.1016/j.jhazmat.2009.07.107 CrossRefGoogle Scholar
  28. Qiang Z, Ling W, Tian F (2013) Kinetics and mechanism for omethoate degradation by catalytic ozonation with Fe(III)-loaded activated carbon in water. Chemosphere 90:1966–1972. doi: 10.1016/j.chemosphere.2012.10.059 CrossRefGoogle Scholar
  29. Rey A, Quiñones DH, Álvarez PM (2011) Simulated solar-light assisted photocatalytic ozonation of metoprolol over titania-coated magnetic activated carbon. Appl Catal B Environ 111:246–253. doi: 10.1016/j.apcatb.2011.10.005 Google Scholar
  30. Rivera-Utrilla J, Sánchez-Polo M (2004) Ozonation of naphthalenesulphonic acid in the aqueous phase in the presence of basic activated carbons. Langmuir the Acs J Surf Colloids 20:9217–9222. doi: 10.1021/la048723+ CrossRefGoogle Scholar
  31. Sánchez-Polo M, Gunten UV, Rivera-Utrilla J (2005) Efficiency of activated carbon to transform ozone into OH radicals: influence of operational parameters. Water Res 39:3189–3198. doi: 10.1016/j.watres.2005.05.026 CrossRefGoogle Scholar
  32. Shao L, Ren Z, Zhang G, Chen L (2012) Facile synthesis, characterization of a MnFe 2 O 4 /activated carbon magnetic composite and its effectiveness in tetracycline removal. Mater Chem Phys 135:16–24. doi: 10.1016/j.matchemphys.2012.03.035 CrossRefGoogle Scholar
  33. Siriwardane RV, Cook JM (1985) Interactions of SO 2 with sodium deposited on silica. J Colloid Interface Sci 108:414–422. doi: 10.1016/0021-9797(85)90280-2 CrossRefGoogle Scholar
  34. Smith KM, Fowler GD, Pullket S, Graham NJD (2009) Sewage sludge-based adsorbents: a review of their production, properties and use in water treatment applications. Water Res 43:2569–2594. doi: 10.1016/j.watres.2009.02.038 CrossRefGoogle Scholar
  35. Temesghen W, Sherwood PMA (2002) Analytical utility of valence band X-ray photoelectron spectroscopy of iron and its oxides, with spectral interpretation by cluster and band structure calculations. Anal Bioanal Chem 373:601–608. doi: 10.1007/s00216-002-136 2-3 CrossRefGoogle Scholar
  36. Wang Y, Yang CM, Schmidt W, Spliethoff B, Bill E, Schüth F (2004) Weakly ferromagnetic ordered mesoporous Co3O4 synthesized by nanocasting from vinyl-functionalized cubic Ia3d mesoporous silica. Adv Mater 17:53–56. doi: 10.1002/adma.200400777 CrossRefGoogle Scholar
  37. Wang H, Zhang L, Qi F, Wang X, Li L, Feng L (2014) Removal performance and mechanism of ibuprofen from water by catalytic ozonation using sludge-corncob activated carbon as catalyst. J Nanosci Nanotechnol 14:7266–7271(7266). doi: 10.1166/jnn.2014.89 42 CrossRefGoogle Scholar
  38. Wen Q et al (2011) Study on activated carbon derived from sewage sludge for adsorption of gaseous formaldehyde. Bioresour Technol 102:942–947. doi: 10.1016/j.biortech.2010.09.042 CrossRefGoogle Scholar
  39. Wen G, Pan ZH, Ma J, Liu ZQ, Zhao L, Li JJ (2012) Reuse of sewage sludge as a catalyst in ozonation—efficiency for the removal of oxalic acid and the control of bromate formation. J Hazard Mater 239–240:381–388. doi: 10.1016/j.jhazmat.2012.09.016 CrossRefGoogle Scholar
  40. Wurz A (2011) Review on municipal sewage sludge management in Turkey and Europe. Int J Global Warming 3:116–128. doi: 10.1504/IJGW.2011.038374 CrossRefGoogle Scholar
  41. Xu G, Xin Y, Spinosa L (2015) Development of sludge-based adsorbents: preparation, characterization, utilization and its feasibility assessment. J Environ Manag 151:221–232. doi: 10.1016/j.jenvman.2014.08.001 CrossRefGoogle Scholar
  42. Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe 2+ and Fe 3+ ions in oxide materials. Appl Surf Sci 254:2441–2449. doi: 10.1016/j.apsusc.2007.09.063 CrossRefGoogle Scholar
  43. Zhuang H, Han H, Hou B, Jia S, Qian Z (2014) Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts. Bioresour Technol 166:178–186. doi: 10.1016/j.biotech.2014.05.056 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Siying Lu
    • 1
  • Yongze Liu
    • 1
  • Li Feng
    • 1
  • Zhongen Sun
    • 1
  • Liqiu Zhang
    • 1
  1. 1.Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and EngineeringBeijing Forestry UniversityBeijingChina

Personalised recommendations