Environmental Science and Pollution Research

, Volume 24, Issue 9, pp 8137–8146 | Cite as

Evaluation of forest structure, biomass and carbon sequestration in subtropical pristine forests of SW China

  • Syed Moazzam Nizami
  • Zhang Yiping
  • Zheng Zheng
  • Lu Zhiyun
  • Yang Guoping
  • Sha Liqing
Research Article


Very old natural forests comprising the species of Fagaceae (Lithocarpus xylocarpus, Castanopsis wattii, Lithocarpus hancei) have been prevailing since years in the Ailaoshan Mountain Nature Reserve (AMNR) SW China. Within these forest trees, density is quite variable. We studied the forest structure, stand dynamics and carbon density at two different sites to know the main factors which drives carbon sequestration process in old forests by considering the following questions: How much is the carbon density in these forest trees of different DBH (diameter at breast height)? How much carbon potential possessed by dominant species of these forests? How vegetation carbon is distributed in these forests? Which species shows high carbon sequestration? What are the physiochemical properties of soil in these forests? Five-year (2005–2010) tree growth data from permanently established plots in the AMNR was analysed for species composition, density, stem diameter (DBH), height and carbon (C) density both in aboveground and belowground vegetation biomass. Our study indicated that among two comparative sites, overall 54 species of 16 different families were present. The stem density, height, C density and soil properties varied significantly with time among the sites showing uneven distribution across the forests. Among the dominant species, L. xylocarpus represents 30% of the total carbon on site 1 while C. wattii represents 50% of the total carbon on site 2. The average C density ranged from 176.35 to 243.97 t C ha−1. The study emphasized that there is generous degree to expand the carbon stocking in this AMNR through scientific management gearing towards conservation of old trees and planting of potentially high carbon sequestering species on good site quality areas.


Forest structure Carbon density Dynamics in composition Pristine forest SW China 



This study was supported by the National Natural Science Foundation of China (U1202234, 31290220), the Yunnan Natural Science Foundation of Yunnan Province, China (2011FA025), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05050601, XDA05050206) and the CAS 135 project (XTBG-F01), Ailaoshan Station for Subtropical Forest Ecosystem Research, Ailaoshan National Nature Reserve Administration at Jingdong, and Central Analysis Lab of XTBG.

Supplementary material

11356_2017_8506_MOESM1_ESM.doc (110 kb)
Table 1s Mean Tree density (No. of tree ha−1), Mean DBH (cm) and Mean Height (m) of the tree species of Primary Subtropical Broad-leaved Forest in Ailaoshan Mountain Nature Reserve (DOC 110 kb).


  1. Anderson JM, Ingram JSI (1993) Tropical soil biology and fertility: a handbook of methods. CAB International, WallingfordGoogle Scholar
  2. Black W (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38CrossRefGoogle Scholar
  3. Boonpragob K (1998) Estimating greenhouse gas emission and sequestration from land use change and forestry in Thailand. In: Moya TB (ed) Greenhouse gas emissions, aerosols, land use and cover changes in Southeast Asia, vol. Southeast Asia Regional Committee, BangkokGoogle Scholar
  4. Bremner JM, Mulvaney CS (1982) Methods of soil analysis: part 2. Chemical and microbiological properties. In: Page AL, R.H. M, Keeney DR (eds) Nitrogen-total. American Society of Agronomy and Soil Science Society of America, Madison, pp 595–624Google Scholar
  5. Brown S, Lugo AE (1982) The storage and production of organic-matter in tropical forests and their role in the global carbon-cycle. Biotropica 14:161–187CrossRefGoogle Scholar
  6. Bunker DE, DeClerck F, Bradford JC, Colwell RK, Perfecto I, Phillips OL, Sankaran M, Naeem S (2005) Species loss and aboveground carbon storage in a tropical forest. Science 310(5750):1029–1031. doi: 10.1126/science.1117682 CrossRefGoogle Scholar
  7. Chan OC, Yang XD, Fu Y, Feng ZL, Sha LQ, Casper P, Zou XM (2006) 16S rRNA gene analyses of bacterial community structures in the soils of evergreen broad-leaved forests in south-west China. FEMS Microbiol Ecol 58(2):247–259. doi: 10.1111/j.1574-6941.2006.00156.x CrossRefGoogle Scholar
  8. D'Amato AW, Bradford JB, Fraver S, Palik BJ (2011) Forest management for mitigation and adaptation to climate change: insights from long-term silviculture experiments. For Ecol Manag 262(5):803–816. doi: 10.1016/j.foreco.2011.05.014 CrossRefGoogle Scholar
  9. Day M, Baldauf C, Rutishauser E, Sunderland TCH (2014) Relationships between tree species diversity and above-ground biomass in Central African rainforests: Implications for REDD. Environ Consr 41:64–72Google Scholar
  10. Deng X, Tang J (2010) Dataset of Chinese ecosystem Position observation and research (Volume of forest ecosystem, Xishuangbanna, Yunnan 1998–2006). China Agriculture Press, Beijing, p 238Google Scholar
  11. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240CrossRefGoogle Scholar
  12. Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2(4) doi:Artn 04502310.1088/1748-9326/2/4/045023Google Scholar
  13. Grimm U, Fassbender HW (1981) Cicilos bioquimicos en un ecosistema de los Andes occidentales de venezula. I, inventrio de las reserve organicas y minerals (N, P, K, CA. Mg, Mn, Fe, Al, Na). Turrialba 31:27–37Google Scholar
  14. Grubb PJ, Edwards P (1982) Studies on ineral cycling in New Guinea. III. The distribution of the mineral elements in above ground materials. Ecology 70:623–648CrossRefGoogle Scholar
  15. Hughes RF, Kauffman JB, Jaramillo VJ (1999) Biomass, carbon, and nutrient dynamics of secondary forests in a humid tropical region of Mexico. Ecology 80:1892–1907Google Scholar
  16. Jucker T, Sanchez AC, Lindsell JA, Allen HD, Amable GS, Coomes DA (2016) Drivers of aboveground wood production in a lowland tropical forest of West Africa: teasing apart the roles of tree density, tree diversity, soil phosphorus, and historical logging. Ecol Evol 6(12):4004–4017. doi: 10.1002/ece3.2175 CrossRefGoogle Scholar
  17. Krishan G, Srivastav SK, Kumar S, Saha SK, Dadhwal VK (2009) Quantifying the underestimation of soil organic carbon by the Walkley and Black technique—examples from Himalayan and central Indian soils. Curr Sci India 96(8):1133–1136Google Scholar
  18. Krzic M, Fortin MC, Bomke AA (2000) Short-term responses of soil physical properties to corn tillage-planting systems in a humid maritime climate. Soil Tillage Res 54:171–178CrossRefGoogle Scholar
  19. Liu WY, Fox JED, Xu ZF (2002) Biomass and nutrient accumulation in montane evergreen broad-leaved forest (Lithocarpus xylocarpus type) in Ailao Mountains, SW China. For Ecol Manag 158(1–3):223–235. doi: 10.1016/S0378-1127(00)00716-7 CrossRefGoogle Scholar
  20. Liu YY, van Dijk AIJM, de Jeu RAM, Canadell JG, McCabe MF, Evans JP, Wang GJ (2015) Recent reversal in loss of global terrestrial biomass. Nat Clim Chang 5(5):470–474. doi: 10.1038/Nclimate2581 CrossRefGoogle Scholar
  21. Luyssaert S, Schulze ED, Borner A, Knohl A, Hessenmoller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455(7210):213–215. doi: 10.1038/nature07276 CrossRefGoogle Scholar
  22. Ma W, Liu WY, Li XJ (2009) Species composition and life forms of epiphytic bryophytes in old growth and secondary forest in Mt. Ailao, SW China. Crypto Bryo 30(4):477–500Google Scholar
  23. Magalhães TM, Seifert T (2015) Tree component biomass expansion factors and root-to-shoot ratio of Lebombo ironwood: measurement uncertainty. Carb Bal Mgt 10(9). doi: 10.1186/s13021-015-0019-4
  24. Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant Cell and Environment 22:715–740CrossRefGoogle Scholar
  25. Mensah S, Veldtman R, du Toit B, Kakai RG, Seifert T (2016) Aboveground biomass and carbon in a South African mistbelt forest and the relationships with tree species diversity and forest structures. Forests 7(4) doi:ARTN 7910.3390/f7040079Google Scholar
  26. Mohanraj R, Saravanan J, Dhanakumar S (2011) Carbon stock in Kolli forests, Eastern Ghats (India) with emphasis on aboveground biomass, litter, woody debris and soils. Iforest-Biogeosciences and Forestry 4:61–65Google Scholar
  27. Murphy PG, Lugo AE (1986) Structure and biomass of a subtropical dry forest in Puerto Rico. Biotropica 18:89–96CrossRefGoogle Scholar
  28. Nabuurs GJ, Masera O, Andrasko K, Benitez-Ponce P, Boer R, Dutschke M, Elsiddig E, Ford-Robertson J, Frumhoff P, Karjalainen, T., Kurz WA, Matsumoto M, Oyhantcabal W, Ravindranath NH, Sanz Sanchez MJ, Zhang XL (2007) Climate change 2007: mitigation, contribution of III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.. In: B. Metz D, O.R., Bosch, P.R., Dave, R., Meyer, L.A., (ed) Forestry, vol., Cambridge, New York., pp 541–584Google Scholar
  29. Nave LE, Vance ED, Swanston CW, Curtis PS (2010) Harvest impacts on soil carbon storage in temperate forests. For Ecol Manag 259(5):857–866. doi: 10.1016/j.foreco.2009.12.009 CrossRefGoogle Scholar
  30. Nizami SM (2012) The inventory of the carbon stocks in sub tropical forests of Pakistan for reporting under Kyoto Protocol. J For Res (Harbin) 23:377–384Google Scholar
  31. Ogawa HY, Ogino K, Kira T (1965) Comparative ecological studies on three main types of forest vegetation in Thailand II plant biomass. Nature and Life in South East Asia vol 4:49–80Google Scholar
  32. Olsen SR, Sommers LE (1982) Phosphorus, chemical and microbiological properties. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. American Society of Agronomy and Soil Science Society of America, Winconsin, pp 403–430Google Scholar
  33. Otieno D, Li YL, Ou YX, Cheng J, Liu SZ, Tang XL, Zhang QM, Jung EY, Zhang DQ, Tenhunen J (2014) Stand characteristics and water use at two elevations in a sub-tropical evergreen forest in southern China. Agric For Meteorol 194:155–166. doi: 10.1016/j.agrformet.2014.04.002 CrossRefGoogle Scholar
  34. Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao SL, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993CrossRefGoogle Scholar
  35. Philip MS (1994) Measuring trees and forests. CAB INternational Press, WallingfordGoogle Scholar
  36. Powers M, Kolka R, Palik B, McDonald R, Jurgensen M (2011) Long-term management impacts on carbon storage in Lake States forests. For Ecol Manag 262(3):424–431. doi: 10.1016/j.foreco.2011.04.008 CrossRefGoogle Scholar
  37. Qui XZ, Xie, X.C., Liu, W.Y. (1998) Studies on forest ecosystem in Ailao Mountains, Yunnan China. In: Press YSaT (ed), vol., Kunming, ChinaGoogle Scholar
  38. Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel A (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. P Natl Acad Sci USA 108(24):9899–9904. doi: 10.1073/pnas.1019576108 CrossRefGoogle Scholar
  39. Sagar R, Raghubanshi AS, Singh JS (2008) Comparison of community composition and species diversity of understorey and overstorey tree species in a dry tropical forest of northern India. J Environ Manag 88(4):1037–1046. doi: 10.1016/j.jenvman.2007.05.013 CrossRefGoogle Scholar
  40. Schaefer DA, Feng WT, Zou XM (2009) Plant carbon inputs and environmental factors strongly affect soil respiration in a subtropical forest of southwestern China. Soil Biol Biochem 41(5):1000–1007. doi: 10.1016/j.soilbio.2008.11.015 CrossRefGoogle Scholar
  41. Sierra CA, del Valle JI, Orrego SA, Moreno FH, Harmon ME, Zapata M, Colorado GJ, Herrera MA, Lara W, Restrepo DE, Berrouet LM, Loaiza LM, Benjumea JF (2007) Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. For Ecol Manag 243(2–3):299–309. doi: 10.1016/j.foreco.2007.03.026 CrossRefGoogle Scholar
  42. Slik JWF, Paoli G, McGuire K, Amaral I, Barroso J, Bastian M, Blanc L, Bongers F, Boundja P, Clark C, Collins M, Dauby G, Ding Y, Doucet JL, Eler E, Ferreira L, Forshed O, Fredriksson G, Gillet JF, Harris D, Leal M, Laumonier Y, Malhi Y, Mansor A, Martin E, Miyamoto K, Araujo-Murakami A, Nagamasu H, Nilus R, Nurtjahya E, Oliveira A, Onrizal O, Parada-Gutierrez A, Permana A, Poorter L, Poulsen J, Ramirez-Angulo H, Reitsma J, Rovero F, Rozak A, Sheil D, Silva-Espejo J, Silveira M, Spironelo W, ter Steege H, Stevart T, Navarro-Aguilar GE, Sunderland T, Suzuki E, Tang JW, Theilade I, van der Heijden G, van Valkenburg J, Van Do T, Vilanova E, Vos V, Wich S, Woll H, Yoneda T, Zang RG, Zhang MG, Zweifel N (2013) Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob Ecol Biogeogr 22(12):1261–1271. doi: 10.1111/geb.12092 CrossRefGoogle Scholar
  43. Tan ZH, Zhang YP, Yu GR, Sha LQ, Tang JW, Deng XB, Song QH (2010) Carbon balance of a primary tropical seasonal rain forest. J Geophys Res-Atmos 115 doi:Artn D00h26 10.1029/2009jd012913
  44. Tan ZH, Zhang YP, Schaefer D, Yu GR, Liang NS, Song QH (2011) An old-growth subtropical Asian evergreen forest as a large carbon sink. Atmos Environ 45(8):1548–1554. doi: 10.1016/j.atmosenv.2010.12.041 CrossRefGoogle Scholar
  45. Tanner EVJ (1985) Jamaican montane forests—nutrient capital and cost of growth. Ecology 73:553–568CrossRefGoogle Scholar
  46. Temesgen H, Affleck D, Poudel K, Gray A, Sessions J (2015) A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models. Scand J Forest Res 30(4):326–335. doi: 10.1080/02827581.2015.1012114 Google Scholar
  47. Woodall CW, Heath LS, Smith JE (2008) National inventories of down and dead woody material forest carbon stocks in the United States: challenges and opportunities. For Ecol Manag 256:221–228CrossRefGoogle Scholar
  48. Wu CY (1987) The vegetation of Yunnan. Science Press, BeijingGoogle Scholar
  49. Zhao M, Zhou GS (2005) Estimation of biomass and net primary productivity of major planted forests in China based on forest inventory data. For Ecol Manag 207:295–313CrossRefGoogle Scholar
  50. Zhou GY, Liu SG, Li Z, Zhang DQ, Tang XL, Zhou CY, Yan JH, Mo JM (2006) Old-growth forests can accumulate carbon in soils. Science 314(5804):1417–1417. doi: 10.1126/science.1130168 CrossRefGoogle Scholar
  51. Zhou L, Dai LM, Wang SX, Huang XT, Wang XC, Qi L, Wang QW, Li GW, Wei YW, Shao GF (2011) Changes in carbon density for three old-growth forests on Changbai Mountain, Northeast China: 1981-2010. Ann Forest Sci 68(5):953–958. doi: 10.1007/s13595-011-0101-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Syed Moazzam Nizami
    • 1
    • 2
    • 3
  • Zhang Yiping
    • 1
    • 4
  • Zheng Zheng
    • 1
    • 4
  • Lu Zhiyun
    • 4
  • Yang Guoping
    • 4
  • Sha Liqing
    • 1
    • 4
  1. 1.Key Laboratory for Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglunChina
  2. 2.College of ForestryFujian Agriculture and Forestry UniversityFuzhouChina
  3. 3.IMARC Karakoram International UniversityGilgitPakistan
  4. 4.Ailaoshan Station for Subtropical Forest Ecosystem ResearchYunnanChina

Personalised recommendations