Skip to main content

Advertisement

Log in

Bioelectrochemical anaerobic sewage treatment technology for Arctic communities

  • Water, sanitation, pollution and health in the Arctic
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study describes a novel wastewater treatment technology suitable for small remote northern communities. The technology is based on an enhanced biodegradation of organic carbon through a combination of anaerobic methanogenic and microbial electrochemical (bioelectrochemical) degradation processes leading to biomethane production. The microbial electrochemical degradation is achieved in a membraneless flow-through bioanode–biocathode setup operating at an applied voltage below the water electrolysis threshold. Laboratory wastewater treatment tests conducted through a broad range of mesophilic and psychrophilic temperatures (5–23 °C) using synthetic wastewater showed a biochemical oxygen demand (BOD5) removal efficiency of 90–97% and an effluent BOD5 concentration as low as 7 mg L−1. An electricity consumption of 0.6 kWh kg−1 of chemical oxygen demand (COD) removed was observed. Low energy consumption coupled with enhanced methane production led to a net positive energy balance in the bioelectrochemical treatment system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • APHA, AWWA and WEF (1995) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  • Clauwaert P, Verstraete W (2008) Methanogenesis in membraneless microbial electrolysis cells. Appl Microbiol Biotechnol 82:829–836

    Article  Google Scholar 

  • Ditzig J, Liu H, Logan BE (2007) Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR). Int. J. Hydrogen Energy 32:2296–2304

    Article  CAS  Google Scholar 

  • Escapa A, Gil-Carrera L, García V, Morán A (2012) Performance of a continuous flow microbial electrolysis cell (MEC) fed with domestic wastewater. Biores. Technol. 117:55–62

    Article  CAS  Google Scholar 

  • Escapa A, Manuel MF, Morán A, Gomez X, Guiot SR, Tartakovsky B (2013) Hydrogen production from glycerol in a membraneless microbial electrolysis cell. Energy Fuel 23:4612–4618

    Article  Google Scholar 

  • Escapa A, Mateos R, Martinez EJ, Blanes J (2016) Microbial electrolysis cells: an emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond. Renew Sustainable Energ Reviews 55:942–956

    Article  CAS  Google Scholar 

  • Gao H, Scherson YD, Wells GF (2014) Towards energy neutral wastewater treatment: methodology and state of the art. Environ Sci: Processes Impacts 16:1223–1246

    CAS  Google Scholar 

  • Gil-Carrera L, Escapa A, Mehta P, Santoyo G, Guiot SR, Morán A, Tartakovsky B (2012) Microbial electrolysis cell scale-up for combined wastewater treatment and hydrogen production. Biores Technol 130:584–591

    Article  Google Scholar 

  • Hou Y, Zhang R, Luo H, Liu G, Kim Y, Yu S, Zeng J (2015) Microbial electrolysis cell with spiral wound electrode for wastewater treatment and methane production. Process Biochem 50:1103–1109

    Article  CAS  Google Scholar 

  • LaBarge N, Yilmazel YD, Hong P-Y, Logan BE (2017) Effect of pre-acclimation of granular activated carbon on microbial electrolysis cell startup and performance. Bioelectrochemistry 113:20–25

    Article  CAS  Google Scholar 

  • Lettinga G (1995) Anaerobic digestion and wastewater treatment systems. Antonie Van Leeuwenhoek 67:3–28

    Article  CAS  Google Scholar 

  • Liu W, Cai W, Guo Z, Wang L, Yang C, Varrone C, Wang A (2016) Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production. Renew Energ 91:334–339

    Article  CAS  Google Scholar 

  • Logan B (2008) Microbial Fuel Cells. John Wiley & Sons Inc., Hoboken

    Google Scholar 

  • Logan B, Call D, Cheng S, Hamelers HVM, Sleutels THJA, Jeremiasse AW, Rozendal RA (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Env Sci Technol 42:8630–8640

    Article  CAS  Google Scholar 

  • Logan B, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686–690

    Article  CAS  Google Scholar 

  • Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4:497–508

    Article  CAS  Google Scholar 

  • Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Current Opinion Biotechnol 19:564–571

    Article  CAS  Google Scholar 

  • Malina JF, Pohland FG (1992) Design of anaerobic processes for the treatment of industrial and municipal wastes, water quality management library. Technomic Publishing Company, Lancaster

    Google Scholar 

  • Pinto RP, Srinivasan B, Guiot SR, Tartakovsky B (2011) The effect of real-time external resistance optimization on microbial fuel cell performance. Wat. Res. 45:1571–1578

    Article  CAS  Google Scholar 

  • Ragush CM, Schmidt JJ, Krkosek WH, Gagnon GA, Truelstrup-Hansen L, Jamieson RC (2015) Performance of municipal waste stabilization ponds in the Canadian Arctic. Ecological Eng 83:413–421

    Article  Google Scholar 

  • Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrogen Energ 31:1632–1640

    Article  CAS  Google Scholar 

  • Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN (2008) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629–634

    Article  CAS  Google Scholar 

  • Santoro C, Artyushkova K, Babanova S, Atanassov P, Ieropoulos I, Grattieri M, Cristiani P, Trasatti S, Li B, Schuler AJ (2014) Parameters characterization and optimization of activated carbon (AC) cathodes for microbial fuel cell application. Bioresource Technol 163:54–63

    Article  CAS  Google Scholar 

  • Sun H, Xu S, Zhuang G, Zhuang X (2016): Performance and recent improvement in microbial fuel cells for simultaneous carbon and nitrogen removal: A review. J. Environ. Sci. in press

  • Tartakovsky B, Manuel MF, Neburchilov V, Wang H, Guiot SR (2008) Biocatalyzed hydrogen production in a continuous flow microbial fuel cell with a gas phase cathode. Power Sour 182:291–297

    Article  CAS  Google Scholar 

  • Tartakovsky B, Manuel MF, Wang H, Guiot SR (2009) High rate membrane-less microbial electrolysis cell for continuous hydrogen production. Int J Hydrog Energy 34:672–677

    Article  CAS  Google Scholar 

  • Villano M, Monaco G, Aulenta F, Majone M (2011) Electrochemically assisted methane production in a biofilm reactor. J Power Sources 196:9467–9472

    Article  CAS  Google Scholar 

  • Wagner RC, Regan JM, Oh SE, Zuo Y, Logan BE (2009) Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Wat Res 43:1480–1488

    Article  CAS  Google Scholar 

  • Wang A, Liu W, Ren N, Cheng H, Lee D-J (2017) Reduced internal resistance of microbial electrolysis cell (MEC) as factors of configuration and stuffing with granular activated carbon. Int J Hydrogen Energ 35:13488–13492

    Article  Google Scholar 

  • Yan H, Regan J (2013) Enhanced nitrogen removal in single-chamber microbial fuel cells with increased gas diffusion areas. Biotechnol Bioeng 110:785–791

    Article  CAS  Google Scholar 

  • Zhang Y, Angelidaki I (2012) Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors. Water Res 46:2727–2736

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Tartakovsky.

Additional information

Responsible editor: Bingcai Pan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tartakovsky, B., Kleiner, Y. & Manuel, MF. Bioelectrochemical anaerobic sewage treatment technology for Arctic communities. Environ Sci Pollut Res 25, 32844–32850 (2018). https://doi.org/10.1007/s11356-017-8390-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8390-1

Keywords

Navigation