Skip to main content
Log in

Preparation, characterization, and application of Ti/TiO2-NTs/Sb-SnO2 electrode in photo-electrochemical treatment of industrial effluents under mild conditions

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Ti/TiO2-NTs/Sb-SnO2 electrode was prepared by gradient pulsed electrodeposition, and its electrochemical properties were evaluated. The catalytic activity and reusability of the electrode were tested by electrochemical oxidation (EO) and photoelectrochemical oxidation (PEO) of organics present in textile industry wastewater (TWW) and coffee bean processing industry wastewater (CWW). COD removal of ~ 41% was achieved after 5-h electrolysis under a constant applied current density of 30 mA cm−2 for TWW and 50 mA cm−2 for CWW. Nearly 14 and 18% increment in COD removal was observed under PEO for TWW and CWW, respectively. The turbidity of TWW reduced from 15 to ~ 3 NTU and the turbidity of CWW reduced from 27 to ~ 3 NTU by both EO and PEO. The % COD removal observed after 5-h electrolysis remained consistent for 7 repeated cycles; however, the catalytic activity of the electrode reduced gradually. These results suggested that the Ti/TiO2-NTs/Sb-SnO2 can be a potential electrode for the treatment of industrial wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anantha NS, Venkatesha TV (2013) Electrochemical treatment of trypan blue synthetic wastewater and its degradation pathway. J Electrochem Sci Eng 3(4):167–184

    Google Scholar 

  • Anantha NS, Venkatesha TV (2014) Metal oxide-coated anodes in wastewater treatment. Environ Sci Pollut Res 21:3197–3217

    Article  Google Scholar 

  • Anantha NS, Venkatesha TV, Giridhar BN, Shubha HN, Pavithra MK (2017) Enhancement in the photo-electrocatalytic activity of SnO2-Sb2O4 mixed metal oxide anode by nano-WO3 modification: application to trypan blue dye degradation. J Environ Chem Eng 5:4969–4979

    Article  Google Scholar 

  • Anlin X, Xiang D, Kajia W, Weiqing H, Jiansheng L, Xiuyun S, Jinyou S, Lianjun W (2017) Preparation and characterization of a TiO2-NT/ SnO2–Sb tubular porous electrode with long service lifetime for wastewater treatment process. RSC Adv 7:37806–37814

    Article  Google Scholar 

  • Ashutosh S, Sumit B, Ranjan S, Reddy BSB, Fecht HJ, Karabi D, Siddhartha D (2012) Influence of current density on microstructure of pulse electrodeposited tin coatings. Mater Charact 68:22–32

    Article  Google Scholar 

  • Basha CA, Soloman PA, Velan M, Balasubramanian N, Roohil Kareem L (2009) Participation of electrochemical steps in treating tannery wastewater. Ind Eng Chem Res 48(22):9786–9796. https://doi.org/10.1021/ie900464s

    Article  CAS  Google Scholar 

  • Berenguer R, Quijada C, Morallón E (2009) Electrochemical characterization of SnO2 electrodes doped with Ru and Pt. Electrochim Acta 54(22):5230–5238. https://doi.org/10.1016/j.electacta.2009.04.016

    Article  CAS  Google Scholar 

  • Carla RC, Francisco M, Emilia M, Paulo O (2010) Electrochemical oxidation of synthetic tannery wastewater in chloride-free aqueous media. J Hazard Mater 180:429–435

    Article  Google Scholar 

  • Chatzisymeon E, Dimou A, Mantzavinos D, Katsaounis A (2009) Electrochemical oxidation of model compounds and olive mill wastewater over DSA® electrodes: 1. The case of Ti/IrO2 anode. J Hazard Mater 167(1-3):268–274. https://doi.org/10.1016/j.jhazmat.2008.12.117

    Article  CAS  Google Scholar 

  • Chin A, Be PR (2005) Removal of disinfection by-product precursors with ozone-UV advanced oxidation process. Water Res 39(10):2136–2144. https://doi.org/10.1016/j.watres.2005.03.021

    Article  CAS  Google Scholar 

  • Ciriaco L, Santos D, Pacheco MJ, Lopes A (2001) Anodic oxidation of organic pollutants on a Ti/SnO2–Sb2O4 anode. J App l Electrochem 41:577–587

    Article  Google Scholar 

  • Costa CR, Montilla F, Morallón E, Olivi P (2010) Electrochemical oxidation of synthetic tannery wastewater in chloride-free aqueous media. J Hazard Mater 180(1-3):429–435. https://doi.org/10.1016/j.jhazmat.2010.04.048

    Article  CAS  Google Scholar 

  • Egerton GS (1949) The mechanism of the photochemical degradation of textile material. J Soc Dyers Colours 65:764–780

  • Errami M, Saighi R, Zarrouk A, Zougagh M, Zarrok H, Hammouti B, Al-Deyab SS (2013) Electrochemical treatment of wastewater industrial cartons. Int J Electrochem Sci 8:12672–12682

    CAS  Google Scholar 

  • Emad Y, Raghad H (2013) Photodegradation and photostabilization of polymers, especially polystyrene: review. SpringerPlus 2(398):1–32

    Google Scholar 

  • Fan CM, Hua B, Wang Y, Liang ZH, Hao XG, Liu SB, Sun YP (2009) Preparation of Ti/SnO2-Sb2O4 photoanode by electrodeposition and dip coating for PEC oxidations. Desalination 249(2):736–741. https://doi.org/10.1016/j.desal.2009.01.035

    Article  CAS  Google Scholar 

  • Fengping H, Ziqiang D, Xinwei C, Weixing C (2011) Improved SnO2–Sb2O4 based anode modified with Cr3C2 and CNT for phenol oxidation. Electrochim Acta 56:1576–1580

    Article  Google Scholar 

  • Guohua Z, Xiao C, Meichuan L, Peiqiang L, Yonggang Z, Tongcheng C, Hongxu L, Yanzhu L, Lei L, Dongming L (2009) Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/Sb-doped SnO2 electrode. Environ Sci Technol 43:1480–1486

    Article  Google Scholar 

  • Gupta VK, Rajeev J, Alok M, Megha M, Shalini S (2007) Photochemical degradation of the hazardous dye safranin-T using TiO2 catalyst. J Colloid Interface Sci 309(2):464–469. https://doi.org/10.1016/j.jcis.2006.12.010

    Article  CAS  Google Scholar 

  • Hao A, Hao C, Wenyi Z, Jianping Z, Yan Q, Xianchun X, Qin L (2012) Fabrication and electrochemical treatment application of a microstructured TiO2-NTs/Sb-SnO2/PbO2 anode in the degradation of C.I. Reactive blue 194 (RB 194). Chem Eng J 209:86–93

    Article  Google Scholar 

  • Hao X, Qian Z, Wei Y, Chu W (2011) A composite Sb-doped SnO2 electrode based on the TiO2 nanotubes prepared by hydrothermal synthesis. Int J Electrochem Sci 6:6639–6652

    Google Scholar 

  • Hine F, Yasuda M, Noda T, Yoshida T, Okuda J (1979) Electrochemical behavior of the oxide-coated metal anodes. Electrochem Sci Technol 126(9):1439–1445

    Article  CAS  Google Scholar 

  • Humberto RJ, Carlos BD, Ivonne LH, Cheikh F, Bilyeu B (2015) A combined electrocoagulation-electrooxidation process for carwash wastewater reclamation. Int J Electrochem Sci 10:6754–6767

    Google Scholar 

  • Jungeng N, Yang L, Enxiang S, Zesheng X, Jinzi L (2016) Electrochemical oxidation of perfluorinated compounds in water. Chemosphere 146:526–538

    Article  Google Scholar 

  • Justin TJ, Oliver SS, Michael RH (2016) Electrochemical transformation of trace organic contaminants in latrine wastewater. Environ Sci Technol 50(18):10198–10208

    Article  Google Scholar 

  • Luo J, Yang J, Li W, Huang Q, Xu H (2012) Electrochemical degradation of reactive brilliant red K-2BP on Ti/RuTiIrSnMn oxide anode in a batch cell. J Electrochem Sci Eng 2:171–183

    CAS  Google Scholar 

  • Martinez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35(12):1324–1340

    Article  CAS  Google Scholar 

  • Martinez-Huitle CA, Rodrigo MA, Sires I, Scialdone O (2015) Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev 115(24):13362–13407. https://doi.org/10.1021/acs.chemrev.5b00361

    Article  CAS  Google Scholar 

  • Md. Tamez U, Yohann N, Celine O, Thierry T, Laurent S, Mathis M. M, Hans-Joachim K, Jurgen Z, Wolfram J. (2012). Nanostructured SnO2−ZnO Heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes. 51:7764–7773

  • Nishanthi ST, Subramanian E, Sundarakannan B, Pathinettam Padiyan D (2015) An insight into the influence of morphology on the photoelectrochemical activity of TiO2 nanotube arrays. Solar Energy Mater Solar Cells 132:204–209

    Article  CAS  Google Scholar 

  • Oury A, Kirchev A, Bultel A (2012) Oxygen evolution on alpha-lead dioxide electrodes in methanesulfonic acid. Electrochim Acta 63:28–36. https://doi.org/10.1016/j.electacta.2011.12.028

    Article  CAS  Google Scholar 

  • Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109(12):6541–6569. https://doi.org/10.1021/cr9001319

    Article  CAS  Google Scholar 

  • Patricia AC, Marly EO, Jeosadaque JS, Marc AA, Maria VBZ (2004) Evaluation of color removal and degradation of a reactive textile azo dye on nanoporous TiO2 thin-film electrodes. Electrochim Acta 49:3807–3820

    Article  Google Scholar 

  • Peiqiang L, Guohua Z, Xiao C, Yonggang Z, Yiting T (2009) Constructing stake structured TiO2-NTs/Sb-doped SnO2 electrode simultaneously with high electrocatalytic and photocatalytic performance for complete mineralization of refractory aromatic acid. J Phys Chem C 113:2375–2383

    Article  Google Scholar 

  • Punith Kumar MK, Venkatesha TV, Pavithra MK, Nithyananda Shetty A (2009) The fabrication, characterization and electrochemical corrosion behavior of Zn-TiO2 composite coatings. Phys Scr 84(3):035601–035610

    Article  Google Scholar 

  • Radjenovic J, Sedlak DL (2015) Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environ Sci Technol 49(19):11292–11302. https://doi.org/10.1021/acs.est.5b02414

    Article  CAS  Google Scholar 

  • Rajkumar D, Palanivelu K (2004) Electrochemical treatment of industrial wastewater. J Hazard Mater 113(1–3):123–129. https://doi.org/10.1016/j.jhazmat.2004.05.039

    Article  CAS  Google Scholar 

  • Sung HW (2011) Nanostructured metals and alloys, processing, microstructure, mechanical properties and applications. Woodhead publishing limited, Philadelphia

    Google Scholar 

  • Tigang D, Ye C, Qing W, Ying D (2015) Different mechanisms and electrocatalytic activities of Ce ion or CeO2 modified Ti/Sb–SnO2 electrodes fabricated by one-step pulse electrocodeposition. RSC Adv 5:19601–19612

    Article  Google Scholar 

  • Wang B, Chang X, Ma H (2008) Electrochemical oxidation of refractory organics in the coking wastewater and chemical oxygen demand (COD) removal under extremely mild conditions. Ind Eng Chem Res 47(21):8478–8483. https://doi.org/10.1021/ie800826v

    Article  CAS  Google Scholar 

  • Watanabe T (2004) Nano-plating microstructure control theory of plated film and database of plated film microstructure, 1st edn. Elsevier, Oxford

    Google Scholar 

  • Weiyi W, Zhao-Hong H, Teik-Thye L (2014) Recent development of mixed metaloxide anodes for electrochemical oxidation of organic pollutants in water. Appl Catal B General 480:58–78

    Article  Google Scholar 

  • Weiyi W, Zhao-Hong H, Teik-Thye L (2015) Enhanced electrochemical oxidation of phenol using a hydrophobic TiO2-NTs/SnO2-Sb-PTFE electrode prepared by pulse electrodeposition. RSC Adv 5:32245–32255

    Article  Google Scholar 

  • Xiao C, Guohua Z, Yanzhu L, Hongxu L, Peiqiang L, Meichuan L (2009) Novel vertically aligned TiO2 nanotubes embedded with Sb-SnO2 electrode with high oxygen evolution potential and long service life. Mater Chem Phys 113:314–321

    Article  Google Scholar 

  • Yong C, Lei H, Hongmin X, Weiqing H, Lianjun W, Xiuyun S, Jiansheng L (2010) Preparation and characterization of TiO2-NTs/SnO2-Sb electrodes by electrodeposition. J Electroanal Chem 648:119–127

    Article  Google Scholar 

  • Zhen L, Youting D, Weijun K, Cui L, Dong L, Xueyuan W, Zhiwen C, Minghong W, Dengyu P (2015) Reduction mechanism and capacitive properties of highly electrochemically reduced TiO2 nanotube arrays. Electrochim Acta 161:40–47

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Chemistry, Kuvempu University, Shankaraghatta for the laboratory facilities and University Grants Commission, New Delhi, India for financial support [F.No.41-231/2012(SR)]. The authors would like to thank Dr. Pavithra M. K, Lecturer, Department of chemistry, Kuvempu University, Shankaraghatta, India and Ms. Shilpi Samiksha, Research Scholar, Department of Earth and Environmental Science, Indian Institute of Science Education and Research, Bhopal, India for their suggestions in the execution of experiments and data interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatesha T Venkatarangaiah.

Additional information

Responsible editor: Bingcai Pan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subba Rao, A.N., Venkatarangaiah, V.T. Preparation, characterization, and application of Ti/TiO2-NTs/Sb-SnO2 electrode in photo-electrochemical treatment of industrial effluents under mild conditions. Environ Sci Pollut Res 25, 11480–11492 (2018). https://doi.org/10.1007/s11356-017-1179-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-1179-4

Keywords

Navigation