Environmental Science and Pollution Research

, Volume 25, Issue 10, pp 9647–9660 | Cite as

Multi-sensor temporal assessment of tropospheric nitrogen dioxide column densities over Pakistan

  • Rabbia Murtaza
  • Muhammad Fahim Khokhar
  • Asma Noreen
  • Salman Atif
  • Khalid Rehman Hakeem
Research Article


Spatial and temporal distributions of tropospheric NO2 vertical column densities over Pakistan during the period 2002–2014 are discussed. Data products from three satellite instruments SCIAMACHY, OMI, and GOME-2 are used to prepare a database of tropospheric NO2 column densities over Pakistan and temporal evolution is also determined. Plausible NO2 sources in Pakistan are also discussed. The results show a large NO2 growth over all provinces and the major cities of Pakistan except the megacity of Karachi. Decline in industrial activities due to energy crises, worsening law and order situation, terrorist attacks, and political instability was explored as the main factor for lower NO2 VCDs over Karachi City. The overall increase can be attributed to the anthropogenic emissions over the areas with high population, traffic density, and industrial activities. Source identification revealed that use of fossil fuels by various sectors including power generation, vehicles, and residential sectors along with agriculture fires are among significant sources of NO2 emissions in Pakistan. Existing emission inventories such as EDGARv4.2 and MACCity largely underestimate the true anthropogenic NOx emissions in Pakistan. This study may provide vital information to policy makers and regulatory authorities in developing countries, including Pakistan, in order to devise effective air pollution abatement policies.


Tropospheric NO2 SCIAMACHY Omi GOME-2 Anthropogenic emissions Temporal evolution 



The authors gratefully acknowledge the TEMIS project for providing level-2 satellite data of NO2 measurements and details about the retrieval and error analyses. We also acknowledge Data of Firm active fire from NASA (National Aeronautics and Space Administration), Population density from LandScan, traffic count from the National Highway Authority (NHA), vehicular data source from National Transport Research Centre of Pakistan, and thermal power plants from Pakistan Bureau of Statistics. Our special gratitude goes to NUST for providing partial financial support from the postgraduate research and development (R and D) fund to conduct this study. Authors also acknowledge the ECCARD database for providing the NOx emissions for both EDGAR and MACCity project from their web portal ( gin.jsf).


  1. Ahmad SS, Biiker P, Emberson L, Shabbir R (2011) Monitoring nitrogen dioxide levels in urban areas in Rawalpindi, Pakistan. Water Air Soil Pollut 220(1-4):141–150.
  2. Ali M, Tariq S, Mahmood K, Daud A, Batool A (2014) A study of aerosol properties over Lahore (Pakistan) by using AERONET data. Asia-Pac J Atmos Sci 50(2):153–162.
  3. Beirle S, Platt U, Wenig M, Wagner T (2003) Weekly cycle of NO2 by GOME measurements: a signature of anthropogenic sources. Atmos Chem Phys 3(6):2225–2232. CrossRefGoogle Scholar
  4. Boersma K, Eskes H, Brinksma E (2004) Error analysis for tropospheric NO2 retrieval from space. J Geophys Res-Atmos 109(D4).
  5. Boersma K, Eskes H, Veefkind J, Brinksma E, Sneep M, van der Oord G, Levelt P, Stammes P, Gleason J, Bucsela E (2006) Near-real time retrieval of tropospheric NO2 from OMI. AtmosChemPhysDiscuss 6:12301–12345Google Scholar
  6. Boersma K, Eskes H, Veefkind J, Brinksma E, van der A R, Sneep M, van den Oord G, Levelt P, Stammes P, Gleason J, Bucsela E (2007) Near-real time retrieval of tropospheric NO2 from OMI. Atmos Chem Phys 7(8):2103–2118. CrossRefGoogle Scholar
  7. Bovensmann H, Burrows J, Buchwitz M, Frerick J, Noël S, Rozanov V, Chance K, Goede A (1999) SCIAMACHY: mission objectives and measurement modes. J Atmos Sci 56(2):127–150Google Scholar
  8. Callies J, Corpaccioli E, Eisinger M, Hahne A, Lefebvre A (2000) GOME-2-Metop’s second-generation sensor for operational ozone monitoring. ESA Bull 102:28–36Google Scholar
  9. Cantrell C (2008) Technical note: review of methods for linear least-squares fitting of data and application to atmospheric chemistry problems. Atmos Chem Phys 8(17):5477–5487. CrossRefGoogle Scholar
  10. Crutzen PJ (1979) The role of NO and NO2 in the chemistry of the troposphere and stratosphere. Annu Rev Earth Planet Sci 7(1):443–472. CrossRefGoogle Scholar
  11. Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Sci 250(4988):1669–1679. CrossRefGoogle Scholar
  12. ESoP (2013). Economic Survey of Pakistan: 2012–2013. Ministry of Finance, Pakistan,
  13. Finlayson-Pitts BJ, Pitts JN Jr (1999) Chemistry of the upper and lower atmosphere—theory, experiments, and applications. Academic PressGoogle Scholar
  14. Gilbert RO (1987) Statistical methods for environmental pollution monitoring. John Wiley and SonsGoogle Scholar
  15. Granier C, Bessagnet B, Bond T, D’Angiola A, van der Gon HD, Frost GJ, Heil A, Kaiser JW, Kinne S, Klimont Z, Kloster S, Lamarque JF, Liousse K, Masui T, Meleux F, Mieville A, Ohara T, Raut JC, Riahi K, Schultz MG, Smith SJ, Thompson A, van Aardenne J, van der Werf GR, van Vuuren PD (2011) Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Climate Change 109(1–2):163–190.
  16. Hakeem KR, Sabir M, Ozturk M, Akhtar MS, Ibrahim FH, Ashraf M, Ahmad MSA (2017) Nitrate and nitrogen oxides: sources, health effects and their remediation. Rev Environ Contam Toxicol 242:183–217. Google Scholar
  17. He Y, Uno I, Wang Z, Ohara T, Sugimoto N, Shimizu A, Richter A, Burrows JP (2007) Variations of the increasing trend of tropospheric NO2 over central east China during the past decade. Atmos Environ 41(23):4865–4876. CrossRefGoogle Scholar
  18. Helsel DR, Hirsch RM (1992) Statistical methods in water resources. Elsevier 552Google Scholar
  19. Hilboll A, Richter A, Burrows J (2013) Supplementary material to “Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments”. Atmos Chem Phys 13:1–3. CrossRefGoogle Scholar
  20. Hirsch RM, Slack JR, Smith RA (1982) Techniques of trend analysis for monthly water quality data. Water Resources Res 18(1):107–121. CrossRefGoogle Scholar
  21. Khattak P, Khokhar MF, Yasmin N (2014a) Spatio-temporal analyses of atmospheric sulfur dioxide column densities over Pakistan by using SCIAMACHY data. Aerosol Air Qual Res 14:1883–1896. Google Scholar
  22. Khattak P, Khokhar MF, Khan SA (2014b) Trans-boundary volcanic SO2 detected over Pakistan from satellite observations during the time period 2004–2012. Aerosol Air Qual Res 14(6):1543–1557Google Scholar
  23. Khattak P, Khokhar MF, Yasmin N (2014) Spatio-temporal analyses of atmospheric sulfur dioxide column densities over Pakistan by using SCIAMACHY data. Aerosol Air Qual Res 14:1883–1896. Google Scholar
  24. Khokhar MF, Fatima N, Yasmin N, Beirle S, Wagner T (2015a) Detection of trends and seasonal variation in tropospheric nitrogen dioxide over Pakistan. Aerosol Air Qual Res 15:2508–2524CrossRefGoogle Scholar
  25. Khokhar MF, Khalid T, Yasmin N, Desmedt I (2015b) Spatio-temporal analyses of formaldehyde over Pakistan by using SCIAMACHY and GOME-2 observations. Aerosol Air Qual Res 15:1760–1773CrossRefGoogle Scholar
  26. Khokhar MF, Mehdi H, Abbas Z, Javed Z (2016a) Temporal assessment of NO2 pollution levels in urban centers of Pakistan by employing ground-based and satellite observations. Aerosol Air Qual Res 16(8):1854–1867. CrossRefGoogle Scholar
  27. Khokhar MF, Naweed SI, Butt JK, Abbas Z (2016b) Comparative analysis of atmospheric glyoxal column densities retrieved from MAX-DOAS observations in Pakistan and during MAD-CAT field campaign in Mainz, Germany. Atmosphere 7(5):68. CrossRefGoogle Scholar
  28. Khokhar MF, Mehdi H, Abbas Z, Javed Z (2016c) Temporal assessment of NO2 pollution levels in urban centers of Pakistan by employing ground-based and satellite observations. Aerosol Air Qual Res 16(8):1854–1867. CrossRefGoogle Scholar
  29. Khokhar MF, Yasmin N, Chishtie F, Shahid I (2016d) Temporal variability and characterization of aerosols across the Pakistan region during the winter fog periods. Atmosphere 7(5):67. CrossRefGoogle Scholar
  30. Khokhar MF, Nisar M, Noreen A, Khan WR, Hakeem KR (2016e) Investigating the nitrogen dioxide concentrations in the boundary layer by using multi-axis spectroscopic measurements and comparison with satellite observations. Environ Sci Pollut Res.
  31. Khokhar M, Frankenberg C, Van Roozendael M, Beirle S, Kühl S, Richter A, Platt U, Wagner T (2005) Satellite observations of atmospheric SO2 from volcanic eruptions during the time-period of 1996–2002. Adv Space Res 36(5):879–887. CrossRefGoogle Scholar
  32. Khokhar M, Platt U, Wagner T (2008) Temporal trends of anthropogenic SO2 emitted by non-ferrous metal smelters in Peru and Russia estimated from satellite observations. Atmos Chem Phys Discuss 8(5):17393–17422. CrossRefGoogle Scholar
  33. Lamsal L, Martin R, Padmanabhan A, van Donkelaar A, Zhang Q, Sioris C, Chance K, Kurosu T, Newchurch M (2011) Application of satellite observations for timely updates to global anthropogenic NOx emission inventories. Geophys Res Lett 38(5).
  34. Lee D, Köhler I, Grobler E, Rohrer F, Sausen R, Gallardo-Klenner L, Olivier J, Dentener F, Bouwman A (1997) Estimations of global NOx emissions and their uncertainties. Atmos Environ 31(12):1735–1749. CrossRefGoogle Scholar
  35. Logan JA, Prather MJ, Wofsy SC, McElroy MB (1981) Tropospheric chemistry: a global perspective. J Geophys Res 86(C8):7210–7254. CrossRefGoogle Scholar
  36. Martin P, Cabañas B, Villanueva F, Gallego MP, Colmenar I, Salgado S (2010) Ozone and nitrogen dioxide levels monitored in an urban area (ciudad real) in central-southern Spain. Water Air Soil Pollut 208(1-4):305–316. CrossRefGoogle Scholar
  37. Molina MJ, Molina LT (2004) Megacities and atmospheric pollution. J Air Waste Manag Assoc 54(6):644680–644680. CrossRefGoogle Scholar
  38. Noreen A, (2016) Temporal record of tropospheric ozone concentrations over Pakistan during the time period of Oct. 2004–Dec. 2014. MS thesis, Institute of Environmental Sciences and Engineering, National University of Science and Technology (NUST) Islamabad, PakistanGoogle Scholar
  39. Noxon J (1976) Atmospheric nitrogen fixation by lightning. Geophy Res Lett 3(8):463–465. CrossRefGoogle Scholar
  40. Olivier J, Bouwman A, Van der Hoek K, Berdowski J (1998) Global air emission inventories for anthropogenic sources of NOx, NH3 and N2O in 1990. Environ Pollut 102(1):135–148. CrossRefGoogle Scholar
  41. Perner D, Platt U (1979) Detection of nitrous acid in the atmosphere by differential optical absorption. Geophy Res Lett 6(12):917–920. CrossRefGoogle Scholar
  42. Platt U, Stutz J (2008) Differential absorption spectroscopy, principles and applications. Springer-Verlag, Berlin Heidelberg, p 1366–5901Google Scholar
  43. Janssens-Maenhout G, Petrescu AMR, Muntean M, Blujdea V, 2010, Verifying greenhouse gas emissions: methods to support international climate agreements, DOI:, GHG Measure Manage 1 : 124 pp
  44. Qudrat-Ullah H, Karakul M (2007) Modelling for policy assessment in the electricity supply sector of Pakistan. Int J Ener Sect Manag 1(3):240–256. CrossRefGoogle Scholar
  45. Richter A, Burrows J (2002) Tropospheric NO2 from GOME measurements. Adv Space Res 29(11):1673–1683. CrossRefGoogle Scholar
  46. Richter A, Burrows JP, Nüß H, Granier C, Niemeier U (2005) Increase in tropospheric nitrogen dioxide over China observed from space. Natur 437(7055):129–132. CrossRefGoogle Scholar
  47. Seiler W, Crutzen PJ (1980) Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim Chang 2(3):207–247. CrossRefGoogle Scholar
  48. Seinfeld JH, Pandis SN (2012) Atmospheric chemistry and physics: from air pollution to climate change. WileyGoogle Scholar
  49. Shabbir Y, Khokhar MF, Shaiganfar R, Wagner T (2015) Spatial variance and assessment of nitrogen dioxide pollution in major cities of Pakistan along N5-highway. J Environ Sci 43:4–14. CrossRefGoogle Scholar
  50. Shon Z-H, Kim K-H, Song S-K (2011) Long-term trend in NO2 and NOx levels and their emission ratio in relation to road traffic activities in East Asia. Atmos Environ 45(18):3120–3131. CrossRefGoogle Scholar
  51. Solomon S, Portmann R, Sanders R, Daniel J, Madsen W, Bartram B, Dutton E (1999) On the role of nitrogen dioxide in the absorption of solar radiation. J Geophysical Res 104(D10):12047–12058. CrossRefGoogle Scholar
  52. Ul-Haq Z, Tariq S, Ali M, Mahmood K, Batool SA, Rana AD (2014) A study of tropospheric NO2variability over Pakistan using OMI data. Atmospheric Pollution Research 5(4):709–720. CrossRefGoogle Scholar
  53. Thompson AM (1992) The oxidizing capacity of the Earth’s atmosphere—probable past and future changes. Sci 256(5060):1157–1165. CrossRefGoogle Scholar
  54. Van Der A R, Peters D, Eskes H, Boersma K, Van Roozendael M, De Smedt I, Kelder H (2006) Detection of the trend and seasonal variation in tropospheric NO2 over China. J Geophys Res 111(D12).
  55. van der Werf GR, Randerson JT, Giglio L, Collatz G, Mu M, Kasibhatla PS, Morton DC, DeFries R, Yv J, van Leeuwen TT (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys 10(23):11707–11735. CrossRefGoogle Scholar
  56. Vijayaraj V, Cheriyadat AM, Sallee P, Colder B, Vatsavai RR, Bright EA, Bhaduri BL (2008) Overhead image statistics, applied imagery pattern recognition workshop, AIPR'08 37th IEEE 1–8.
  57. Wagner T, Bv D, Cv F, Frieß U, Sanghavi S, Sinreich R, Platt U (2004) MAX-DOAS O4 measurements: a new technique to derive information on atmospheric aerosols—principles and information content. J Geophys Res 109(D22):1–19. CrossRefGoogle Scholar
  58. Williams E, Hutchinson G, Fehsenfeld F (1992) NOx and N2O emissions from soil. Global Biogeochem Cy 6(4):351–388. CrossRefGoogle Scholar
  59. WHO (2000) WHO air quality guidelines for Europe 2nd edn, WHO Regional Publication, European Series No 91 CopenhagenGoogle Scholar
  60. WHO—World Health Organization Report (2016). Ambient (Outdoor) Air Pollution in Cities Database 2014, Published in May 2016 Press Release. Last Access: 29 April 2017
  61. Zhou Y, Brunner D, Hueglin C, Henne S, Staehelin J (2012) Changes in OMI tropospheric NO2 columns over Europe from 2004 to 2009 and the influence of meteorological variability. Atmos Environ 46:482–495. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Environmental Sciences and EngineeringNational University of Sciences and TechnologyIslamabadPakistan
  2. 2.Institute of Geographical Information SystemNational University of Sciences and TechnologyIslamabadPakistan
  3. 3.Department of Biological Sciences, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations