Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 9, pp 8747–8764 | Cite as

Chemical characterization and quantitativ e assessment of source-specific health risk of trace metals in PM1.0 at a road site of Delhi, India

  • Jai Prakash
  • Tarachand Lohia
  • Anil K. Mandariya
  • Gazala Habib
  • Tarun Gupta
  • Sanjay K. Gupta
Research Article

Abstract

This study presents the concentration of submicron aerosol (PM1.0) collected during November, 2009 to March, 2010 at two road sites near the Indian Institute of Technology Delhi campus. In winter, PM1.0 composed 83% of PM2.5 indicating the dominance of combustion activity-generated particles. Principal component analysis (PCA) proved secondary aerosol formation as a dominant process in enhancing aerosol concentration at a receptor site along with biomass burning, vehicle exhaust, road dust, engine and tire tear wear, and secondary ammonia. The non-carcinogenic and excess cancer risk for adults and children were estimated for trace element data set available for road site and at elevated site from another parallel work. The decrease in average hazard quotient (HQ) for children and adults was estimated in following order: Mn > Cr > Ni > Pb > Zn > Cu both at road and elevated site. For children, the mean HQs were observed in safe level for Cu, Ni, Zn, and Pb; however, values exceeded safe limit for Cr and Mn at road site. The average highest hazard index values for children and adults were estimated as 22 and 10, respectively, for road site and 7 and 3 for elevated site. The road site average excess cancer risk (ECR) risk of Cr and Ni was close to tolerable limit (10−4) for adults and it was 13–16 times higher than the safe limit (10−6) for children. The ECR of Ni for adults and children was 102 and 14 times higher at road site compared to elevated site. Overall, the observed ECR values far exceed the acceptable level.

Keywords

Road site PM1.0 Ions Trace elements PCA-MLR Risk apportionment Delhi 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of IIT Delhi through seed grant for the completion of this project. The authors also acknowledge the contribution of M. Tech. colleague (Amrita Singhai) and for his participation in sample collection and chemical analyses.

Supplementary material

11356_2017_1174_MOESM1_ESM.docx (136 kb)
ESM 1 (DOCX 136 kb)

References

  1. Aatmeeyata, Kaul DS, Sharma M (2009) Traffic generated non-exhaust particulate emissions from concrete pavement: a mass and particle size study for two-wheelers and small cars. Atmos Environ 43(35):5691–5697.  https://doi.org/10.1016/j.atmosenv.2009.07.032 CrossRefGoogle Scholar
  2. Andreae, O.M., Annegran, T.W., Beer, H., Cachier, J., Le Canut, H., Elbert, P., Maenhaut, W., Salma, I., Wienhold, F.G., Zenker, T., 1998. Airborne studies of aerosol emissions from savanna fires in southern Africa: 2. Aerosol chemical composition, Journal of geophysical research. William Byrd Press for John Hopkins PressGoogle Scholar
  3. Artaxo P, Oyola P, Martinez R (1999) Aerosol composition and source apportionment in Santiago de Chile. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 150(1-4):409–416.  https://doi.org/10.1016/S0168-583X(98)01078-7 CrossRefGoogle Scholar
  4. Bari A, Kindzierski WB (2016) Fine particulate matter PM2.5 in Edmonton, Canada: source apportionment and potential risk for human health. Environ Pollut 218:219–229.  https://doi.org/10.1016/j.envpol.2016.06.014 CrossRefGoogle Scholar
  5. Bari MA, Kindzierski WB (2017) Concentrations, sources and human health risk of inhalation exposure to air toxics in Edmonton, Canada. Chemosphere 173:160–171.  https://doi.org/10.1016/j.chemosphere.2016.12.157 CrossRefGoogle Scholar
  6. Begum BA, Kim E, Biswas SK, Hopke PK (2004) Investigation of sources of atmospheric aerosol at urban and semi-urban areas in Bangladesh. Atmos Environ 38(19):3025–3038.  https://doi.org/10.1016/j.atmosenv.2004.02.042 CrossRefGoogle Scholar
  7. Boldo E, Linares C, Lumbreras J, Borge R, Narros A, García-Pérez J, Fernández-Navarro P, Pérez-Gómez B, Aragonés N, Ramis R, Pollán M, Moreno T, Karanasiou A, López-Abente G (2011) Health impact assessment of a reduction in ambient PM2.5 levels in Spain. Environ Int 37(2):342–348.  https://doi.org/10.1016/j.envint.2010.10.004 CrossRefGoogle Scholar
  8. Brunekreef, B., Beelen, R.M.J., Hoek, G., Schouten, L.J., Bausch-Goldbohm, S., Fischer, P., Armstrong, B., Hughes, E., Jerrett, M., van den Brandt, P., 2009. Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study. Res Rep Health Eff Inst Mar, 5–71-89Google Scholar
  9. Burgard DA, Bishop GA, Stedman DH, Gessner VH, Daeschlein C (2006) Remote sensing of in-use heavy-duty diesel trucks. Environ Sci Technol 40(22):6938–6942.  https://doi.org/10.1021/es060989a CrossRefGoogle Scholar
  10. Chakraborty A, Gupta T (2010) Chemical characterization and source apportionment of submicron (PM1) aerosol in Kanpur Region, India. Aerosol Air Qual Res 10:433–445.  https://doi.org/10.4209/aaqr.2009.11.0071 Google Scholar
  11. Cheng Y, Lee SC, Ho KF, Chow JC, Watson JG, Louie PKK, Cao JJ, Hai X (2010) Chemically-speciated on-road PM2.5 motor vehicle emission factors in Hong Kong. Sci Total Environ 408(7):1621–1627.  https://doi.org/10.1016/j.scitotenv.2009.11.061 CrossRefGoogle Scholar
  12. Cheng Y, Zou SC, Lee SC, Chow JC, Ho KF, Watson JG, Han YM, Zhang RJ, Zhang F, Yau PS, Huang Y, Bai Y, Wu WJ (2011) Characteristics and source apportionment of PM1.0 emissions at a roadside station. J Hazard Mater 195:82–91.  https://doi.org/10.1016/j.jhazmat.2011.08.005 CrossRefGoogle Scholar
  13. Chow JC, Watson JG, Fujita EM, Lu Z, Lawson DR, Ashbaugh LL (1994) Temporal and spatial variations of PM2.5 and PM10 aerosol in the Southern California air quality study. Atmos Environ 28(12):2061–2080.  https://doi.org/10.1016/1352-2310(94)90474-X CrossRefGoogle Scholar
  14. Chow JC, Watson JG, Kuhns H, Etyemezian V, Lowenthal DH, Crow D, Kohl SD, Engelbrecht JP, Green MC (2004) Source profiles for industrial, mobile, and area sources in the big bend regional aerosol visibility and observational study. Chemosphere 54(2):185–208.  https://doi.org/10.1016/j.chemosphere.2003.07.004 CrossRefGoogle Scholar
  15. CPCB, 2010. Central pollution control board, air quality monitoring, emission inventory and source apportionment study for Indian cities, National Summary Report The Central Pollution Control Board, New Delhi, IndiaGoogle Scholar
  16. Delfino, R.J., Staimer, N., Tjoa, T., Gillen, D., Kleinman, M.T., Sioutas, C., Cooper, D., 2008. Research | children’s health personal and ambient air pollution exposures and lung function decrements in children with asthma, 550–558. doi: https://doi.org/10.1289/ehp.10911
  17. Deshmukh DK, Deb MK, Mkoma SL (2013) Size distribution and seasonal variation of size-segregated particulate matter in the ambient air of Raipur city, India. Air Qual Atmos Heal 6(1):259–276.  https://doi.org/10.1007/s11869-011-0169-9 CrossRefGoogle Scholar
  18. Gietl JK, Lawrence R, Thorpe AJ, Harrison RM (2010) Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmos Environ 44(2):141–146.  https://doi.org/10.1016/j.atmosenv.2009.10.016 CrossRefGoogle Scholar
  19. Gioia SMCL, Babinski M, Weiss DJ, Kerr AAFS (2010) Insights into the dynamics and sources of atmospheric lead and particulate matter in São Paulo, Brazil, from high temporal resolution sampling. Atmos Res 98(2-4):478–485.  https://doi.org/10.1016/j.atmosres.2010.08.016 CrossRefGoogle Scholar
  20. Godoi RHM, Godoi AFL, de Quadros LC, Polezer G, Silva TOB, Yamamoto CI, van Grieken R, Potgieter-Vermaak S (2013) Risk assessment and spatial chemical variability of PM collected at selected bus stations. Air Qual Atmos Heal 6(4):725–735.  https://doi.org/10.1007/s11869-013-0210-2 CrossRefGoogle Scholar
  21. Gupta T, Jaiprakash, Dubey S (2011) Field performance evaluation of a newly developed PM2.5 sampler at IIT Kanpur. Sci Total Environ 409(18):3500–3507.  https://doi.org/10.1016/j.scitotenv.2011.05.020 CrossRefGoogle Scholar
  22. Gupta T, Mandariya A (2013) Sources of submicron aerosol during fog-dominated wintertime at Kanpur. Environ Sci Pollut Res 20(8):5615–5629.  https://doi.org/10.1007/s11356-013-1580-6 CrossRefGoogle Scholar
  23. Harrison RM, Yin J (2000) Particulate matter in the atmosphere: which particle properties are important for its effects on health? Sci Total Environ 249(1-3):85–101.  https://doi.org/10.1016/S0048-9697(99)00513-6 CrossRefGoogle Scholar
  24. Huang M, Wang W, Chan CY, Cheung KC, Man YB, Wang X, Wong MH (2014) Contamination and risk assessment (based on bio-accessibility via ingestion and inhalation) of metal (loid) s in outdoor and indoor particles from urban centers of Guangzhou, China. Sci Total Environ, 479, 117-124.  https://doi.org/10.1016/j.scitotenv.2014.01.115
  25. IRIS (Integrated Risk Assessment System), 1995. United States Environmental Protection Agency, www.epa.gov/IRIS/
  26. Izhar S, Goel A, Chakraborty A, Gupta T (2016) Annual trends in occurrence of submicron particles in ambient air and health risk posed by particle bound metals. Chemosphere 146:582–590.  https://doi.org/10.1016/j.chemosphere.2015.12.039 CrossRefGoogle Scholar
  27. Jaiprakash, Gazala H (2017) Chemical and optical properties of PM2.5 from on-road operation of light duty vehicles in Delhi city. Sci Total Environ 586:900–916.  https://doi.org/10.1016/j.scitotenv.2017.02.070 CrossRefGoogle Scholar
  28. Jaiprakash, Singhai A, Habib G, Raman RS, Gupta T (2017) Chemical characterization of PM1.0 aerosol in Delhi and source apportionment using positive matrix factorization. Environ Sci Pollut Res 24(1):445–462.  https://doi.org/10.1007/s11356-016-7708-8 CrossRefGoogle Scholar
  29. Jena S, Singh G (2017) Human health risk assessment of airborne trace elements in Dhanbad. India Atmos Pollut Res J 8(3):490–502.  https://doi.org/10.1016/j.apr.2016.12.003 CrossRefGoogle Scholar
  30. Kean AJ, Harley RA, Kendall GR (2003) Effects of vehicle speed and engine load on motor vehicle emissions. Environ Sci Technol 37(17):3739–3746.  https://doi.org/10.1021/es0263588 CrossRefGoogle Scholar
  31. Khan MK, Latif MT, Saw WH, Amil N, Nadzir MSM, Sahani M, Tahir NM, Chung JX (2016) Fine particulate matter in the tropical environment: monsoonal effects, source apportionment, and health risk assessment fine particulate matter in the tropical environment: monsoonal effects, source apportionment, and health risk assessment. Atmos Chem Phys 16(2):597–617.  https://doi.org/10.5194/acp-16-597-2016 CrossRefGoogle Scholar
  32. Khanna, I., Khare, M., Gargava, P., 2015. Health risks associated with heavy metals in fine particulate matter: a case study in Delhi City, India. 72–77Google Scholar
  33. Khillare PS, Sarkar S (2012) Atmospheric pollution research airborne inhalable metals in residential areas of Delhi. India: Distrib Source Apportionment and Health Risks 3:46–54.  https://doi.org/10.5094/APR.2012.004 Google Scholar
  34. Kloog I (2016) Fine particulate matter (PM2.5) association with peripheral artery disease admissions in northeastern United States. Int J Environ Health Res 26(5-6):572–577.  https://doi.org/10.1080/09603123.2016.1217315 CrossRefGoogle Scholar
  35. Krall, J.R., Mulholland, J.A., Russell, A.G., Balachandran, S., Winquist, A., Tolbert, P.E., Waller, L.A., Sarnat, S.E., 2016. Associations between source-specific fine particulate matter and emergency department visits for respiratory disease in four U.S. cities. doi: https://doi.org/10.1289/EHP271
  36. Kupiainen K, Tervahattu H, Raisanen M (2003) Experimental studies about the impact of traction sand on urban road dust composition. Sci Total Environ 308(1-3):175–184.  https://doi.org/10.1016/S0048-9697(02)00674-5 CrossRefGoogle Scholar
  37. Kurian, A. J., (2011) Chemical characterization of aerosol in Delhi: identification and quantification of sources sing positive matrix factorization. M.Tech. Thesis, IIT DelhiGoogle Scholar
  38. Landis MS, Norris GA, Williams RW, Weinstein JP (2001) Personal exposures to PM2.5 mass and trace elements in Baltimore, MD, USA. Atmos Environ 35(36):6511–6524.  https://doi.org/10.1016/S1352-2310(01)00407-1 CrossRefGoogle Scholar
  39. Larsen RK, Baker JE (2003) Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods.  https://doi.org/10.1021/es0206184
  40. Lawrence S, Sokhi R, Ravindra K, Mao H, Douglas H, Bull ID (2013) Source apportionment of traffic emissions of particulate matter using tunnel measurements. Atmos Environ 77:548–557.  https://doi.org/10.1016/j.atmosenv.2013.03.040 CrossRefGoogle Scholar
  41. Li Z, Yuan Z, Li Y, Lau AKH, Louie PKK (2015) Characterization and source apportionment of health risks from ambient PM10 in Hong Kong over 2000 and 2011. Atmos Environ 122:892–899Google Scholar
  42. Liao HT, Chou CCK, Chow JC, Watson JG, Hopke PK, Wu CF (2015) Source and risk apportionment of selected VOCs and PM2.5 species using partially constrained receptor models with multiple time resolution data. Environ Pollut 205:121–130.  https://doi.org/10.1016/j.envpol.2015.05.035 CrossRefGoogle Scholar
  43. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa MA, Amann M, Ross Anderson H, Andrews KG, Aryee M, Atkinson C, Bacchus LJ, Bahalim AN, Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell ML, Blore JD, Blyth F, Bonner C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce NG, Brunekreef B, Bryan-Hancock C, Bucello C, Buchbinder R, Bull F, Burnett RT, Byers TE, Calabria B, Carapetis J, Carnahan E, Chafe Z, Charlson F, Chen H, Shen Chen J, Tai-Ann Cheng A, Christine Child J, Cohen A, Ellicott Colson K, Cowie BC, Darby S, Darling S, Davis A, Degenhardt L, Dentener F, Des Jarlais DC, Devries K, Dherani M, Ding EL, Ray Dorsey E, Driscoll T, Edmond K, Eltahir Ali S, Engell RE, Erwin PJ, Fahimi S, Falder G, Farzadfar F, Ferrari A, Finucane MM, Flaxman S, Gerry Fowkes FR, Freedman G, Freeman MK, Gakidou E, Ghosh S, Giovannucci E, Gmel G, Graham K, Grainger R, Grant B, Gunnell D, Gutierrez HR, Hall W, Hoek HW, Hogan A, Dean Hosgood H III, Hosgood H III, Hoy D, Hu H, Hubbell BJ, Hutchings SJ, Ibeanusi SE, Jacklyn GL, Jasrasaria R, Jonas JB, Kan H, Kanis JA, Kassebaum N, Kawakami N, Khang Y-H, Khatibzadeh S, Khoo J-P, Kok C, Laden F, Lalloo R, Lan Q, Lathlean T, Leasher JL, Leigh J, Li Y, Kent Lin J, Lipshultz SE, London S, Lozano R, Lu Y, Mak J, Malekzadeh R, Mallinger L, Marcenes W, March L, Marks R, Martin R, McGale P, McGrath J, Mehta S, Memish ZA, Mensah GA, Merriman TR, Micha R, Michaud C, Mishra V, Mohd Hanafi ah K, Mokdad AA, Morawska L, Mozaff arian D, Murphy T, Naghavi M, Neal B, Nelson PK, Miquel Nolla J, Norman R, Olives C, Omer SB, Orchard J, Osborne R, Ostro B, Page A, Pandey KD, Parry CD, Passmore E, Patra J, Pearce N, Pelizzari PM, Petzold M, Phillips MR, Pope D, Arden Pope C III, Powles J, Rao M, Razavi H, Rehfuess EA, Rehm JT, Ritz B, Rivara FP, Roberts T, Robinson C, Rodriguez-Portales JA, Romieu I, Room R, Rosenfeld LC, Roy A, Rushton L, Salomon JA, Sampson U, Sanchez-Riera L, Sanman E, Sapkota A, Seedat S, Shi P, Shield K, Shivakoti R, Singh GM, Sleet DA, Smith E, Smith KRC, Stapelberg NJ, Steenland K, Stöckl H, Jacob Stovner L, Straif K, Straney L, Thurston GD, Tran JH, Van Dingenen R, van Donkelaar A, Lennert Veerman J, Vijayakumar L, Weintraub R, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams W, Wilson N, Woolf AD, Yip P, Zielinski JM, Lopez AD, Murray LCJ, Ezzati M, Lim SS, Flaxman AD, Andrews MPH KG, Atkinson CB, Carnahan EB, Colson BA, Engell BA, Freedman GB, Freeman BA, Gakidou MK, Jasrasaria E, Lozano RB, Mallinger MPH R, Mokdad L, Murphy AA, Naghavi T, Roberts M, Rosenfeld MPH TB, Sanman LC, Straney EB, Murray LL, Vos CJ, Charlson MPH T, Page F, Lopez A, Blore AD, Norman JD, Hall R, Veerman AW, Khatibzadeh JL, Shi S, Danaei P, Ding G, ScD EL, Giovannucci E, Laden ScD F, Lin AB, Lu JK, Micha YM, Mozaff arian R, Rao D, Salomon MB, Singh JA, White GM, MA RA, Adair-Rohani MPH H, Chafe MPH Z, Smith KR, Tran Ma JH, George S (2013) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2224–2260.  https://doi.org/10.1016/S0140-6736(12)61766-8 CrossRefGoogle Scholar
  44. Liu EF, Yan T, Birch G, Zhu YX (2014) Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Sci Total Environ 476:522–531.  https://doi.org/10.1016/j.scitotenv.2014.01.055 CrossRefGoogle Scholar
  45. Malm WC, Sisler JF, Huffman D, Eldred RA, Cahill TA (1994) Spatial and seasonal trends in particle concentration and optical extinction in the United States. J Geophys Res 99(D1):1347–1370.  https://doi.org/10.1029/93JD02916 CrossRefGoogle Scholar
  46. Mehta B, Venkataraman C, Bhushan M, Tripathi SN (2009) Identification of sources affecting fog formation using receptor modeling approaches and inventory estimates of sectoral emissions. Atmos Environ 43(6):1288–1295.  https://doi.org/10.1016/j.atmosenv.2008.11.041 CrossRefGoogle Scholar
  47. MORTH (2013) Road Transport Year Book 2012-13. Ministry of Road Transport and Highways, New DelhiGoogle Scholar
  48. MSME (2013) Ministry of Micro Small and Medium Enterprises, annual report 2013–14. http://msme.gov.in/WriteReadData/DocumentFile/ANNUALREPORT-MSME-2013-14P.pdf
  49. Nordin EZ, Eriksson AC, Roldin P, Nilsson PT, Carlsson JE, Kajos MK, Hellén H, Wittbom C, Rissler J, Löndahl J, Swietlicki E, Svenningsson B, Bohgard M, Kulmala M, Hallquist M, Pagels JH (2013) Geoscientific instrumentation methods and data systems secondary organic aerosol formation from idling gasoline passenger vehicle emissions investigated in a smog chamber. Atmos Chem Phys 13(12):6101–6116.  https://doi.org/10.5194/acp-13-6101-2013 CrossRefGoogle Scholar
  50. Olson DS, Norris GA, Landis MS, Vette AF (2004) Chemical characterization of ambient particulate matter near the World Trade Center: elemental carbon, organic carbon, and mass reconstruction. Environ Sci Technol 38(17):4465–4473.  https://doi.org/10.1021/es030689i CrossRefGoogle Scholar
  51. Pant P, Harrison RM (2013) Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: a review. Atmos Environ 77:78–97.  https://doi.org/10.1016/j.atmosenv.2013.04.028
  52. Pant P, Harrison RM (2012) Critical review of receptor modelling for particulate matter: a case study of India. Atmos Environ 49:1–12.  https://doi.org/10.1016/j.atmosenv.2011.11.060 CrossRefGoogle Scholar
  53. Pant P, Shi Z, Pope FD, Harrison RM (2017) Characterization of traffic-related particulate matter emissions in a road tunnel in Birmingham. trace metals and organic molecular markers, UK, pp 117–130.  https://doi.org/10.4209/aaqr.2016.01.0040 Google Scholar
  54. Platt SM, El Haddad I, Zardini AA, Clairotte M, Astorga C, Wolf R, Slowik JG, Temime-Roussel B, Marchand N, Ježek I, Drinovec L, Močnik G, Möhler O, Richter R, Barmet P, Bianchi F, Baltensperger U, Prévôt ASH (2013) Geoscientific instrumentation methods and data systems secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber. Atmos Chem Phys 13(18):9141–9158.  https://doi.org/10.5194/acp-13-9141-2013 CrossRefGoogle Scholar
  55. Pope CA III, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc 56(6):709–742.  https://doi.org/10.1080/10473289.2006.10464485 CrossRefGoogle Scholar
  56. Pulles T, Denier van der Gon H, Appelman W, Verheul M (2012) Emission factors for heavy metals from diesel and petrol used in European vehicles. Atmos Environ 61:641–651.  https://doi.org/10.1016/j.atmosenv.2012.07.022 CrossRefGoogle Scholar
  57. Rajeev P, Rajput P, Gupta T (2016) Chemical characteristics of aerosol and rain water during an El Nino and PDO influenced Indian summer monsoon. Atmos Environ 145:192–200.  https://doi.org/10.1016/j.atmosenv.2016.09.026 CrossRefGoogle Scholar
  58. Raman RS, Ramachandran S, Rastogix N (2010) Source identification of ambient aerosols over an urban region in western India. J Environ Monit 12(6):1330–1340.  https://doi.org/10.1039/b925511g CrossRefGoogle Scholar
  59. RTI (2008) Research Triangle Institute (RTI), Standard Operating Procedure for Particulate Matter Gravimetric AnalysisGoogle Scholar
  60. Sadavarte P, Venkataraman C (2014) Trends in multi-pollutant emissions from a technology-linked inventory for India: I. Industry and transport sectors. Atmos Environ 99:353–364.  https://doi.org/10.1016/j.atmosenv.2014.09.081 CrossRefGoogle Scholar
  61. Sahu LK, Kondo Y, Miyazaki Y, Pongkiatkul P, Kim Oanh NT (2011) Seasonal and diurnal variations of black carbon and organic carbon aerosols in Bangkok. J Geophys Res Atmos 116(D15):1–14.  https://doi.org/10.1029/2010JD015563 CrossRefGoogle Scholar
  62. Sandhu K, Singh A, Vigyan Kendra K (2014) Impact of climatic change on human health. Indian Res J Ext Edu 14:36–48Google Scholar
  63. Shridhar V, Khillare PS, Agarwal T, Ray S (2010) Metallic species in ambient particulate matter at rural and urban location of Delhi. J Hazard Mater 175(1-3):600–607.  https://doi.org/10.1016/j.jhazmat.2009.10.047 CrossRefGoogle Scholar
  64. Shukla A, Alam M (2010) Assessment of real world on-road vehicle emissions under dynamic urban traffic conditions in Delhi. Int J Urban Sci 14(2):207–220.  https://doi.org/10.1080/12265934.2010.9693677 CrossRefGoogle Scholar
  65. Shukla PC, Gupta T, Labhsetwar NK, Agarwal AK (2017) Trace metals and ions in particulates emitted by biodiesel fuelled engine. Fuel 188:603–609.  https://doi.org/10.1016/j.fuel.2016.10.059 CrossRefGoogle Scholar
  66. Singh DK, Gupta T (2016) Source apportionment and risk assessment of PM1 bound trace metals collected during foggy and non-foggy episodes at a representative site in the Indo-Gangetic plain. Sci Total Environ 550:80–94.  https://doi.org/10.1016/j.scitotenv.2016.01.037 CrossRefGoogle Scholar
  67. Song S, Wu Y, Jiang J, Yang L, Cheng Y, Hao J (2012) Chemical characteristics of size-resolved PM 2.5 at a roadside environment in Beijing, China. Environ Pollut 161:215–221.  https://doi.org/10.1016/j.envpol.2011.10.014 CrossRefGoogle Scholar
  68. Thorpe A, Harrison RM (2008) Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Total Environ 400(1-3):270–282.  https://doi.org/10.1016/j.scitotenv.2008.06.007 CrossRefGoogle Scholar
  69. Thurston GD, Spengler JD (1985) A quantitative assessment of source contribution to inhalable particulate matter pollution in Metropolitan Boston. Atmos Environ 19(1):9–25.  https://doi.org/10.1016/0004-6981(85)90132-5 CrossRefGoogle Scholar
  70. Tsai JH, Lin JH, Yao YC, Chiang HL (2012) Size distribution and water soluble ions of ambient particulate matter on episode and non-episode days in southern Taiwan. Aerosol Air Qual Res 12:263–274.  https://doi.org/10.4209/aaqr.2011.10.0167 Google Scholar
  71. Updyke KM, Nguyen TB, Nizkorodov SA (2012) Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic precursors. Atmos Environ 63:22–31.  https://doi.org/10.1016/j.atmosenv.2012.09.012 CrossRefGoogle Scholar
  72. USEPA (U.S. Environmental Protection Agency), (1998)  Quality assurance guidance document 2.12: monitoring PM2.5 in ambient air using designated reference or class I equivalent methods. National Exposure Research Laboratory, Research Triangle Park, NCGoogle Scholar
  73. USEPA (U.S. Environmental Protection Agency), (2004). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). Office of Superfund Remediation and Technology Innovation, Washington, D.C.Google Scholar
  74. USEPA (U.S. Environmental Protection Agency), (2009). Risk assessment guidance for superfund volume I: human health evaluation manual (part F, supplemental guidance for inhalation risk assessment). Office of Superfund Remediation and Technology Innovation, Washington, D.C.Google Scholar
  75. USEPA, (2011). Risk assessment guidance for superfund. In: Part, A. (Ed.), Human health evaluation manual; part E, supplemental guidance for dermal risk assessment; part F, supplemental guidance for inhalation risk assessment, I. Google Scholar
  76. USEPA (United States Environmental Protection Agency), (2015). User's guide/technical background document for US EPA region 9's RSL (Regional Screening Levels) tables. http://www.epa.gov/region9/superfund/prg/
  77. Vega E, Mugica V, Reyes E, Anchez G, Chow JC, Watson JG (2001) Chemical composition of fugitive dust emitters in Mexico City. Atmos Environ 35(23):4033–4039.  https://doi.org/10.1016/S1352-2310(01)00164-9 CrossRefGoogle Scholar
  78. Wu CF, Wu SY, Wu YH, Cullen AC, Larson TV, Williamson J, Liu LJ (2009) Cancer risk assessment of selected hazardous air pollutants in Seattle. Environ Int 35(1):516–522.  https://doi.org/10.1016/j.envint.2010.06.006 CrossRefGoogle Scholar
  79. Yu H-L, Chien L-C (2016) Short-term population-based non-linear concentration–response associations between fine particulate matter and respiratory diseases in Taipei (Taiwan): a spatiotemporal analysis. J Expo Sci Environ Epidemiol 26(2):197–206.  https://doi.org/10.1038/jes.2015.21 CrossRefGoogle Scholar
  80. Zheng N, Liu J, Wang Q, Liang Z (2010) Science of the total environment health risk assessment of heavy metal exposure to street dust in the zinc smelting district. Northeast of China 408(4):726–733.  https://doi.org/10.1016/j.scitotenv.2009.10.075 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil EngineeringIndian Institute of Technology DelhiDelhiIndia
  2. 2.Department of Civil EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations