Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 12, pp 12177–12182 | Cite as

Lipid metabolism and benzo[a]pyrene degradation by Fusarium solani: an unexplored potential

  • Isabelle Delsarte
  • Catherine Rafin
  • Fida Mrad
  • Etienne Veignie
Short Research and Discussion Article

Abstract

In a search for indigenous soil saprotrophic fungi for bioremediation purposes, Fusarium solani, a saprotrophic fungus belonging to the phylum Ascomycota, was isolated from a fossil carbon contaminated soil. The effect of the carbon source, glucose or olive oil, was investigated in vitro on the biomass produced by F. solani and on the degradation of benzo[a]pyrene (BaP) in mineral medium. After only 12 days of incubation, BaP degradation by F. solani was higher (37.4%) with olive oil used as the carbon source than the one obtained with glucose (4.2%). Catalase activity increased in the presence of olive oil (3.4 μkat mg−1 protein) in comparison with glucose (2.1 μkat mg−1 protein). When olive oil was used as the carbon source, BaP degradation increased up to 76.0% in the presence of a specific catalase inhibitor, 3-Amino-1,2,4-triazole (2 mM). This metabolic engineering strategy based both on the use of olive oil as carbon source (cultivation strategy) and on the blocking of the catalase activity could be an innovative and promising approach for fungal biodegradation of BaP and consequently for bioremediation of soil contaminated with polycyclic aromatic hydrocarbons.

Keywords

3-Amino-1,2,4-triazole Benzo[a]pyrene Biodegradation Carbon source Fusarium solani Olive oil Peroxisome 

References

  1. Aguirre J, Ríos-Momberg M, Hewitt D, Hansberg W (2005) Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 13(3):111–118.  https://doi.org/10.1016/j.tim.2005.01.007 CrossRefGoogle Scholar
  2. Aranda E (2016) Promising approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota Fungi. Curr Opin Biotechnol 38:1–8.  https://doi.org/10.1016/j.copbio.2015.12.002 CrossRefGoogle Scholar
  3. Bagnyukova TV, Vasylkiv OY, Storey KB, Lushchak VI (2005) Catalase inhibition by amino triazole induces oxidative stress in goldfish brain. Brain Res 1052(2):180–186.  https://doi.org/10.1016/j.brainres.2005.06.002 CrossRefGoogle Scholar
  4. Binns D, Januszewski T, Chen Y, Hill J, Markin VS, Zhao Y, Gilpin YC, Chapman KD, Anderson RGW, Goodman JM (2006) An intimate collaboration between peroxisomes and lipid bodies. J Cell Biol 173(5):719–731.  https://doi.org/10.1083/jcb.200511125 CrossRefGoogle Scholar
  5. Camargo-de-Morais MM, Ramos SAF, Pimentel MCB, de Morais MA Jr, Lima Filho JL (2003) Production of an extracellular polysaccharide with emulsifier properties by Penicillium citrinum. World J Microbiol Biotechnol 19(2):191–194.  https://doi.org/10.1023/A:1023299111663 CrossRefGoogle Scholar
  6. Donaldson RP (2002) Peroxisomal Membrane Enzymes. In: Baker A, Graham IA (eds) Plant peroxisomes. Springer, Dordrecht, pp 259–278.  https://doi.org/10.1007/978-94-015-9858-3_8 CrossRefGoogle Scholar
  7. Fayeulle A, Veignie E, Slomianny C, Dewailly E, Munch JC, Rafin C (2014) Energy-dependent uptake of benzo[a]pyrene and its cytoskeleton-dependent intracellular transport by the telluric fungus Fusarium solani. Environ Sci Pollut Res 21(5):3515–3523.  https://doi.org/10.1007/s11356-013-2324-3 CrossRefGoogle Scholar
  8. Hammel KE (1995) Mechanisms for polycyclic aromatic hydrocarbon degradation by ligninolytic fungi. Environ Health Perspect 103(Suppl 5):41–43.  https://doi.org/10.1289/ehp.95103s441 CrossRefGoogle Scholar
  9. Kunau WH, Dommes V, Schulz H (1995) Beta-oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress. Prog Lipid Res 34(4):267–342.  https://doi.org/10.1016/0163-7827(95)00011-9 CrossRefGoogle Scholar
  10. Luna-Velasco MA, Esparza-García F, Cañízares-Villanueva RO, Rodríguez-Vázquez R (2007) Production and properties of a bioemulsifier synthesized by phenanthrene-degrading Penicillium sp. Process Biochem 42(3):310–314.  https://doi.org/10.1016/j.procbio.2006.08.015 CrossRefGoogle Scholar
  11. Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol Amst Neth 101(1):13–30.  https://doi.org/10.1016/j.aquatox.2010.10.006 CrossRefGoogle Scholar
  12. Muriel JM, Bruque JM, Olías JM, Jiménez-Sánchez A (1996) Production of biosurfactants by Cladosporium resinae. Biotechnol Lett 18(3):235–240.  https://doi.org/10.1007/BF00142937 CrossRefGoogle Scholar
  13. Potin O, Rafin C, Veignie E (2004) Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil. Int Biodeterior Biodegrad 54(1):45–52.  https://doi.org/10.1016/j.ibiod.2004.01.003 CrossRefGoogle Scholar
  14. Radwan SS, Soliman AH (1988) Arachidonic acid from fungi utilizing fatty acids with shorter chains as sole sources of carbon and energy. Microbiology 134(2):387–393.  https://doi.org/10.1099/00221287-134-2-387 CrossRefGoogle Scholar
  15. Rafin C, de Foucault B, Veignie E (2013) Exploring micromycetes biodiversity for screening benzo[a]pyrene degrading potential. Environ Sci Pollut Res 20(5):3280–3289.  https://doi.org/10.1007/s11356-012-1255-8 CrossRefGoogle Scholar
  16. Shai N, Schuldiner M, Zalckvar E (2016) No peroxisome is an island—peroxisome contact sites. Biochim Biophys Acta 1863(5):1061–1069.  https://doi.org/10.1016/j.bbamcr.2015.09.016 CrossRefGoogle Scholar
  17. Thion C, Cébron A, Beguiristain T, Leyval C (2012) PAH biotransformation and sorption by Fusarium solani and Arthrobacter oxydans isolated from a polluted soil in axenic cultures and mixed co-cultures. Int Biodeterior Biodegrad 68:28–35.  https://doi.org/10.1016/j.ibiod.2011.10.012 CrossRefGoogle Scholar
  18. Ueda M, Kinoshita H, Yoshida T, Kamasawa N, Osumi M, Tanaka A (2003) Effect of catalase-specific inhibitor 3-amino-1,2,4-triazole on yeast peroxisomal catalase in vivo. FEMS Microbiol Lett 219:93–98.  https://doi.org/10.1016/S0378-1097(02)01201-6 CrossRefGoogle Scholar
  19. van der Klei IJ, Veenhuis M (2006) Yeast and filamentous fungi as model organisms in microbody research. Biochim Biophys Acta BBA - Mol Cell Res 1763(12):1364–1373.  https://doi.org/10.1016/j.bbamcr.2006.09.014 CrossRefGoogle Scholar
  20. Veignie E, Rafin C, Woisel P, Cazier F (2004) Preliminary evidence of the role of hydrogen peroxide in the degradation of benzo[a]pyrene by a non-white rot fungus Fusarium solani. Environ Pollut 129(1):1–4.  https://doi.org/10.1016/j.envpol.2003.11.007 CrossRefGoogle Scholar
  21. Veignie E, Vinogradov E, Sadovskaya I, Coulon C, Rafin C (2012) Preliminary characterizations of a carbohydrate from the concentrated culture filtrate from Fusarium solani and its role in benzo[a]pyrene solubilization. Adv Microbiol 2:375–381CrossRefGoogle Scholar
  22. Walton PA, Pizzitelli M (2012) Effects of peroxisomal catalase inhibition on mitochondrial function. Front Physio 3(108):1–10.  https://doi.org/10.3389/fphys.2012.00108 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV EA 4492)Université du Littoral Côte d’OpaleDunkerqueFrance

Personalised recommendations