Environmental Science and Pollution Research

, Volume 25, Issue 10, pp 9380–9390 | Cite as

Can Cd translocation in Oryza sativa L. be attenuated by arbuscular mycorrhizal fungi in the presence of EDTA?

  • Xiaochen Huang
  • Guangnan An
  • Shishu Zhu
  • Li Wang
  • Fang Ma
Research Article


Arbuscular mycorrhizal (AM) fungi play an important role in plant tolerance of heavy metal contamination. In this study, a pot experiment was conducted to illustrate the effects of the two AM fungi species Funneliformis mosseae (Fm) and Rhizophagus irregularis (Ri) on plant growth of Oryza sativa L. either with or without ethylenediamine tetraacetate (EDTA) addition and during exposure to five Cd concentrations (in the range of 0–5 mg kg−1). The results showed that Fm inoculation achieved greater mycorrhizal colonization and mycorrhizal dependency indexes than Ri inoculation. In addition, the effects of AM fungi on Cd biosorption and translocation in rice were also investigated in the presence of EDTA. Despite cooperative adsorption, the Freundlich isotherm could describe the biosorption effects of Cd on rice roots regardless of AM fungi inoculation or EDTA addition. Cd concentrations in mycorrhizal roots increased but decreased in mycorrhizal shoots in contrast to the control treatment. Although EDTA addition negatively inhibited the uptake of Cd to mycorrhizal shoots, lower translocation factor (TF) and bioconcentration factor (BCF) were still observed in treatments with EDTA compared to control treatment. Our findings suggest that Ri and Fm inoculation enhanced Cd immobilization in the roots, thus preventing Cd entry into the food chain during exposure to low and high Cd stress, respectively.


Cadmium Immobilization Funneloformis mosseae Rhizophagus irregularis EDTA 


Funding information

The research was supported by the Nanqi Ren Studio, Academy of Environment & Ecology, Harbin Institute of Technology (HSCJ201708) and the National Natural Science Foundation of China (31570505).

Supplementary material

11356_2017_1157_MOESM1_ESM.docx (68 kb)
ESM 1 (DOCX 68 kb)


  1. Babaeian E, Homaee M, Rahnemaie R (2016) Chelate-enhanced phytoextraction and phytostabilization of lead-contaminated soils by carrot (Daucus carota). Arch Agron Soil Sci 62(3):339–358. CrossRefGoogle Scholar
  2. Baslam M, Garmendia I, Goicoechea N (2011) Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce. J Agr Food Chem 59(10):5504–5515. CrossRefGoogle Scholar
  3. Bissonnette L, St-Arnaud M, Labrecque M (2010) Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial. Plant Soil 332(1-2):55–67. CrossRefGoogle Scholar
  4. Castillo OS, Dasgupta-Schubert N, Alvarado CJ, Zaragoza EM, Villegas HJ (2011) The effect of the symbiosis between Tagetes erecta L.(marigold) and Glomus intraradices in the uptake of copper (II) and its implications for phytoremediation. New Bio 29(1):156–164. CrossRefGoogle Scholar
  5. Chan WF, Li H, Wu FY, Wu SC, Wong MH (2013) Arsenic uptake in upland rice inoculated with a combination or single arbuscular mycorrhizal fungi. J Hazard Mater 262:1116–1122. CrossRefGoogle Scholar
  6. Chen B, Shen H, Li X, Feng G, Christie P (2004) Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant Soil 261(1/2):219–229. CrossRefGoogle Scholar
  7. Chen BD, Zhu YG, Smith FA (2006) Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil. Chemosphere 62(9):1464–1473. CrossRefGoogle Scholar
  8. Chen L, Zhang D, Yang W, Liu Y, Zhang L, Gao S (2016) Sex-specific responses of Populus deltoides to Glomus intraradices colonization and Cd pollution. Chemosphere 155:196–206. CrossRefGoogle Scholar
  9. Dong J, Wang L, Ma F, Yang J, Qi S, Zhao T (2016) The effect of Funnelliformis mosseae inoculation on the phytoremediation of atrazine by the aquatic plant Canna indica L. var. flava Roxb. RSC Adv 6(27):22538–22549. CrossRefGoogle Scholar
  10. Fawzy M, Nasr M, Helmi S, Nagy H (2016) Experimental and theoretical approaches for Cd (II) biosorption from aqueous solution using Oryza sativa biomass. Int J Phyto 18(11):1096–1103. CrossRefGoogle Scholar
  11. Firmin S, Labidi S, Fontaine J, Laruelle F, Tisserant B, Nsanganwimana F, Pourrut B, Dalpé Y, Grandmougin A, Douay F, Shirali P, Verdin A, Sahraoui AL (2015) Arbuscular mycorrhizal fungal inoculation protects Miscanthus × giganteus against trace element toxicity in a highly metal-contaminated site. Sci Total Environ 527:91–99CrossRefGoogle Scholar
  12. Garg N, Bhandari P (2014) Cadmium toxicity in crop plants and its alleviation by arbuscular mycorrhizal (AM) fungi: an overview. Plant Biosyst 148:609–621CrossRefGoogle Scholar
  13. Garg N, Chandel S (2010) Arbuscular mycorrhizal networks: process and functions. A review. Agron Sustain Dev 30(3):581–599. CrossRefGoogle Scholar
  14. Garg N, Chandel S (2015) Role of arbuscular mycorrhiza in arresting reactive oxygen species (ROS) and strengthening antioxidant defense in Cajanus cajan (L.) Millsp. nodules under salinity (NaCl) and cadmium (Cd) stress. Plant Growth Regul 75(2):521–534. CrossRefGoogle Scholar
  15. Gianinazzi S, Schüepp H (1994) Impact of arbuscular mycorrhizas on substainable agriculture and natural ecosystems. Springer Science & Business Media. CrossRefGoogle Scholar
  16. Hristozkova M, Geneva M, Stancheva I, Boychinova M, Djonova E (2016) Contribution of arbuscular mycorrhizal fungi in attenuation of heavy metal impact on Calendula officinalis development. Appl Soil Ecol 101:57–63. CrossRefGoogle Scholar
  17. Huang X, Ho SH, Zhu S, Ma F, Wu J, Yang J, Wang L (2017a) Adaptive response of arbuscular mycorrhizal symbiosis to accumulation of elements and translocation in Phragmites australis affected by cadmium stress. J Environ Manag 197:448–455. CrossRefGoogle Scholar
  18. Huang X, Wang L, Ma F (2017b) Arbuscular mycorrhizal fungus modulates the phytotoxicity of Cd via combined responses of enzymes, thiolic compounds, and essential elements in the roots of Phragmites australis. Chemosphere 187:221–229. CrossRefGoogle Scholar
  19. Huang X, Wang L, Zhu S, Ho SH, Wu J, Kalita PK, Ma F (2018) Unraveling the effects of arbuscular mycorrhizal fungus on uptake, translocation, and distribution of cadmium in Phragmites australis (Cav.) Trin. ex Steud. Ecotox Environ Safe 149:43–50. CrossRefGoogle Scholar
  20. Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17(2):75–91. CrossRefGoogle Scholar
  21. Jiang QY, Tan SY, Zhuo F, Yang DJ, Ye ZH, Jing YX (2016a) Effect of Funneliformis mosseae on the growth, cadmium accumulation and antioxidant activities of Solanum nigrum. Appl Soil Ecol 98:112–120. CrossRefGoogle Scholar
  22. Jiang QY, Zhuo F, Long SH, Zhao HD, Yang DJ, Ye ZH, Li SS, Jing YX (2016b) Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils? Sci Rep 6(1):21805. CrossRefGoogle Scholar
  23. Kachou SS, Ben Mansoura A, Leclerc JC, Mechergui R, Rejeb MN, Ouerghi Z (2009) Effect of heavy metals on antioxidant activities of Atriplex hortensis and A. rosea. J Food Agric Environ 7:938–945Google Scholar
  24. Khade SW, Adholeya A (2007) Feasible bioremediation through arbuscular mycorrhizal fungi imparting heavy metal tolerance: a retrospective. Bioremediat J 11(1):33–43. CrossRefGoogle Scholar
  25. Kim YY, Yang YY, Lee Y (2002) Pb and Cd uptake in rice roots. Physiol Plant 116(3):368–372. CrossRefGoogle Scholar
  26. Kumar KS, Dayananda S, Subramanyam C (2005) Copper alone, but not oxidative stress, induces copper–metallothionein gene in Neurospora crassa. FEMS Microbial Lett 242(1):45–50CrossRefGoogle Scholar
  27. Lai HY, Chen ZS (2004) Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Chemosphere 55(3):421–430. CrossRefGoogle Scholar
  28. Lai HY (2015) Subcellular distribution and chemical forms of cadmium in Impatiens walleriana in relation to its phytoextraction potential. Chemosphere 138:370–376. CrossRefGoogle Scholar
  29. Li H, Luo N, Zhang LJ, Zhao HM, Li YW, Cai QY, Wong MH, Mo CH (2016) Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice? Sci Total Environ 571:1183–1190. CrossRefGoogle Scholar
  30. Lingua G, Franchin C, Todeschini V, Castiglione S, Biondi S, Burlando B, Parravicini V, Torrigiani P, Berta G (2008) Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. Environ Pollut 153(1):137–147. CrossRefGoogle Scholar
  31. Maret W (2003) Cellular zinc and redox states converge in the metallothionein/thionein pair. J Nutr 133(5 Suppl 1):1460S–1462SCrossRefGoogle Scholar
  32. Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FMG (2005) Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58(8):1011–1022. CrossRefGoogle Scholar
  33. Mendez MO, Maier RM (2008) Phytoremediation of mine tailings in temperate and arid environments. Rev Environ Sci Bio 7(1):47–59. CrossRefGoogle Scholar
  34. Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12(4):563–569. Google Scholar
  35. Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29(6):645–653. CrossRefGoogle Scholar
  36. Miransari M (2017) Arbuscular mycorrhizal fungi and heavy metal tolerance in plants. Arbuscular Mycorrhizas and Stress Tolerance of Plants. Springer, Singapore, pp 147–161CrossRefGoogle Scholar
  37. Plenchette C, Fortin JA, Furlan V (1983) Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. Plant Soil 70(2):211–217. CrossRefGoogle Scholar
  38. Schroeder MS, Janos DP (2005) Plant growth, phosphorus nutrition, and root morphological responses to arbuscular mycorrhizas, phosphorus fertilization, and intraspecific density. Mycorrhiza 15(3):203–216. CrossRefGoogle Scholar
  39. Sebastian A, Prasad MNV (2014) Cadmium minimization in rice. A review. Agron Sustain Dev 34(1):155–173. CrossRefGoogle Scholar
  40. Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162(2):511–524. CrossRefGoogle Scholar
  41. Soares CR, Siqueira JO (2008) Mycorrhiza and phosphate protection of tropical grass species against heavy metal toxicity in multi-contaminated soil. Biol Fertil Soils 44(6):833–841. CrossRefGoogle Scholar
  42. Sun Y, Zhao D, Xu Y, Wang L, Liang X, Shen Y (2016) Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological evaluation. Front Env Sci Eng 10:85–92CrossRefGoogle Scholar
  43. Tiedje JM (1975) Microbial degradation of ethylenediaminetetraacetate in soils and sediments. Appl Microbiol 30(2):327–329Google Scholar
  44. Vassil AD, Kapulnik Y, Raskin I, Salt DE (1998) The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiol 117(2):447–453. CrossRefGoogle Scholar
  45. Wang F, Liu X, Shi Z, Tong R, Adams CA, Shi X (2016) Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants—a soil microcosm experiment. Chemosphere 147:88–97. CrossRefGoogle Scholar
  46. Wang FY, Wang L, Shi ZY, Li YJ, Song ZM (2012) Effects of AM inoculation and organic amendment, alone or in combination, on growth, P nutrition, and heavy-metal uptake of tobacco in Pb-Cd-contaminated soil. J Plant Growth Regul 31(4):549–559. CrossRefGoogle Scholar
  47. Wang M, Zou J, Duan X, Jiang W, Liu D (2007) Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.) Bioresour Technol 98(1):82–88. CrossRefGoogle Scholar
  48. Wang L, Huang X, Ma F, Ho SH, Wu J, Zhu S (2017) Role of Rhizophagus irregularis in alleviating cadmium toxicity via improving the growth, micro-and macroelements uptake in Phragmites australis. Environ Sci Pollut Res 24(4):3593–3607. CrossRefGoogle Scholar
  49. Weissenhorn I, Leyval C (1995) Root colonization of maize by a Cd-sensitive and a Cd-tolerant Glomus mosseae and cadmium uptake in sand culture. Plant Soil 175(2):233–238. CrossRefGoogle Scholar
  50. Wu J, Ma F, Wang L, Yang J, Huang X, An G, Liu S (2014) Seedling performance of Phragmites australis (Cav.) Trin ex. Steudel in the presence of arbuscular mycorrhizal fungi. J Appl Microbial 116(6):1593–1606. CrossRefGoogle Scholar
  51. Wu S, Zhang X, Chen B, Wu Z, Li T, Hu Y, Sun Y, Wang Y (2016) Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance. Environ Exp Bot 122:10–18. CrossRefGoogle Scholar
  52. Xie P, Dong J, Zhang H, Ma Y, Cao D, Ma R, Liu R, Liu C, Liang Y (2015) Effects of cadmium on bioaccumulation and biochemical stress response in rice (Oryza sativa L.) Ecotox Environ Safe 122:392–398. CrossRefGoogle Scholar
  53. Yu H, Wang J, Fang W, Yuan J, Yang Z (2006) Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Sci Total Environ 370(2-3):302–309. CrossRefGoogle Scholar
  54. Zaier H, Ghnaya T, Rejeb KB, Lakhdar A, Rejeb S, Jemal F (2010) Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus. Bioresour Technol 101(11):3978–3983. CrossRefGoogle Scholar
  55. Zhang XH, Lin AJ, Gao YL, Reid RJ, Wong MH, Zhu YG (2009) Arbuscular mycorrhizal colonisation increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake. Soil Biol Biochem 41(5):930–935. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Urban Water Resource and EnvironmentHarbin Institute of TechnologyHarbinPeople’s Republic of China
  2. 2.Appraisal Center for Environment & Engineering Ministry of Environmental ProtectionBeijingPeople’s Republic of China

Personalised recommendations