Environmental Science and Pollution Research

, Volume 25, Issue 10, pp 9969–9980 | Cite as

Photodegradation of 2,4-dichlorophenol by supported Pd(X2) catalyst (X = Cl, Br, N3): a HOMO manipulating point of view

  • Sajedeh Tehrani Nejad
  • Abdolghafar Abolhosseini Shahrnoy
  • Ali Reza Mahjoub
  • Niloufar Esmaeili Saloumahaleh
  • Zeynab Khazaee
Research Article
  • 76 Downloads

Abstract

Three different palladium(II) complexes with ligands containing nitrogenized aromatic rings were investigated theoretically as model to obtain the computational band gap energies. The results demonstrated promising possibility for designing palladium(II) complexes with photocatalytic properties at visible light irradiation. Deliberated products were synthesized via grafting on the silica-coated Fe3O4 magnetic nanoparticles (Fe3O4@SiO2). Formation of complexes on the surface of Fe3O4@SiO2, as insoluble and reusable photocatalysts, was proved by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric (TGA), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), transmission electron microscope (TEM), and scanning electron microscopy (SEM) analyses. The trend of the band gap energies of prepared structures was calculated via experimental and theoretical methods. The photocatalytic capability of these nanoparticles was investigated in degradation of 2,4-dichlorophenol by means of HPLC analysis. A tentative reaction mechanism for the formation of intermediates was proposed.

Graphical abstract

Keywords

Palladium(II) complex Photocatalyst Magnetic nanoparticles Visible light 2,4-Dichlorophenol 

Notes

Acknowledgements

Support of this investigation by Tarbiat Modares University and Iranian nanotechnology initiative council is gratefully acknowledged.

Supplementary material

11356_2017_1117_MOESM1_ESM.docx (169 kb)
ESM 1 (DOCX 168 kb)
11356_2017_1117_MOESM2_ESM.mol (2 kb)
ESM 2 (MOL 2 kb)
11356_2017_1117_MOESM3_ESM.mol (2 kb)
ESM 3 (MOL 2 kb)
11356_2017_1117_MOESM4_ESM.mol (3 kb)
ESM 4 (MOL 2 kb)

References

  1. Abolhosseini Shahrnoy A, Mahjoub AR, Eslami-Moghadam M, Fakhri H (2014) Dichloro (1,10-phenanthroline-5,6-dione) palladium(II) complex supported by mesoporous silica SBA-15 as a photocatalyst for degradation of 2,4-dichlorophenol. J Mol Struct 1076:568–575.  https://doi.org/10.1016/j.molstruc.2014.08.024 CrossRefGoogle Scholar
  2. Abolhosseini Shahrnoy A, Mahjoub AR, Morsali A, Dusek M, Eigner V (2018) Sonochemical synthesis of polyoxometalate based of ionic crystal nanostructure: a photocatalyst for degradation of 2,4-dichlorophenol. Ultrason Sonochem 40(Pt A):174–183.  https://doi.org/10.1016/j.ultsonch.2017.07.018 CrossRefGoogle Scholar
  3. Aghayan H, Mahjoub AR, Khanchi AR (2013) Synthesis and characterization of cesium molybdo vanado phosphate immobilized on platelet SBA-15: an efficient inorganic composite ion-exchanger for gadolinium ion sorption. Appl Surf Sci 274:7–14.  https://doi.org/10.1016/j.apsusc.2013.02.005 CrossRefGoogle Scholar
  4. Balcha A, Yadav OP, Dey T (2016) Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods. Environ Sci Pollut Res 23(24):25485–25493.  https://doi.org/10.1007/s11356-016-7750-6 CrossRefGoogle Scholar
  5. Boruah PK, Sharma B, Karbhal I, Shelke MV, Das MR (2017) Ammonia-modified graphene sheets decorated with magnetic Fe3O4 nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation. J Hazard Mater 325:90–100.  https://doi.org/10.1016/j.jhazmat.2016.11.023 CrossRefGoogle Scholar
  6. Benitez FJ, Beltran-Heredia J, Acero JL, Javier Rubio F (2000) Contribution of free radicals to chlorophenols decomposition by several advanced oxidation processes. Chemosphere 41(8):1271–1277.  https://doi.org/10.1016/S0045-6535(99)00536-6 CrossRefGoogle Scholar
  7. Campos-Carrasco A, Bruce M, Reguero M, Masdeu-Bultó AM (2014) Pd(II) complexes with 3,3′-substituted bipyridine ligands: Synthesis, crystal structure, DFT calculations and catalytic studies in compressed carbon dioxide. Inorg Chim Acta 409:285–295.  https://doi.org/10.1016/j.ica.2013.09.053 CrossRefGoogle Scholar
  8. Chu W-K, Wei X-G, Yiu S-M, Ko C-C, Lau K-C (2015) Strongly phosphorescent neutral rhenium(I) isocyanoborato complexes: synthesis, characterization, and photophysical, electrochemical, and computational studies. Chem Eur J 21(6):2603–2612.  https://doi.org/10.1002/chem.201405291 CrossRefGoogle Scholar
  9. Czaplicka M (2004) Sources and transformations of chlorophenols in the natural environment. Sci Total Environ 322(1-3):21–39.  https://doi.org/10.1016/j.scitotenv.2003.09.015 CrossRefGoogle Scholar
  10. Davis EA, Mott NF (1970) Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos Mag 22(179):0903–0922.  https://doi.org/10.1080/14786437008221061 CrossRefGoogle Scholar
  11. Deng YH, Wang CC, Hu JH, Yang WL, Fu SK (2005) Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloids Surf A Physicochem Eng Asp 262(1-3):87–93.  https://doi.org/10.1016/j.colsurfa.2005.04.009 CrossRefGoogle Scholar
  12. Dey T (2012) Nanotechnology for water purification. Universal Publishers Inc, USA. isbn:9781612336190Google Scholar
  13. Dey T (2006) Polymer-coated magnetic nanoparticles: surface modification and end-functionalization. J Nanosci Nanotechnol 6(8):2479–2483.  https://doi.org/10.1166/jnn.2006.534 CrossRefGoogle Scholar
  14. Eslami MM, Divsalar A, Abolhosseini Shahrnoy A, Saboury AA (2016) Synthesis, cytotoxicity assessment, and interaction and docking of novel palladium(II) complexes of imidazole derivatives with human serum albumin. J Biomolec Struc Dynam 34:1751–1762.  https://doi.org/10.1080/07391102.2015.1090345 CrossRefGoogle Scholar
  15. Fakhri H, Mahjoub AR, Cheshme Khavar AH (2016) Improvement of visible light photocatalytic activity over graphene oxide/CuInS2/ZnO nanocomposite synthesized by hydrothermal method. Mat Sci in Semicon Proc 41:38–44.  https://doi.org/10.1016/j.mssp.2015.05.020 CrossRefGoogle Scholar
  16. Jakonen M, Hirva P, Haukka M, Chardon-Noblat S, Lafolet F, Chauvin J, Deronzier A (2007) An alternative synthesis method for [Os(NN)(CO)2X2] complexes (NN = 2,2′-bipyridine, 4,4′-dimethyl-2,2′-bipyridine; X = Cl, Br, I). Electrochemical and photochemical properties and behavior. Dalton Trans (30):3314–3324.  https://doi.org/10.1039/B704931E
  17. Ha K (2010a) Acta Cryst E66:m7Google Scholar
  18. Ha K (2010b) Acta Cryst E66:m38Google Scholar
  19. Ha K (2010c) Acta Cryst E66:m145Google Scholar
  20. Kaya Y, Icsel C, Yilmaz VT, Buyukgungor O (2014) Palladium(II) and platinum(II) complexes of a new imineoxime ligand—structural, spectroscopic and DFT/time-dependent (TD) DFT studies. J Organomet Chem 752:83–90.  https://doi.org/10.1016/j.jorganchem.2013.12.011 CrossRefGoogle Scholar
  21. Kokushi E, Shintoyo A, Koyama J, Uno S (2016) Evaluation of 2,4-dichlorophenol exposure of Japanese medaka, Oryzias latipes, using a metabolomics approach. Environ Sci Pollut Res 24(36):27678–27686.  https://doi.org/10.1007/s11356-016-6425-7 CrossRefGoogle Scholar
  22. Lam SM, Sin JC, Abdullah AZ, Mohamed AR (2012) Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: a review. Desalinat Water Treatment 41(1-3):131–169.  https://doi.org/10.1080/19443994.2012.664698 CrossRefGoogle Scholar
  23. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110.  https://doi.org/10.1021/cr068445e CrossRefGoogle Scholar
  24. Lehlooh AF, Mahmood S, Abu-Aljarayesh I (1994) Mössbauer and X-ray diffraction studies of heat-treated Fe3O4 fine particles. J Magn Magn Mater 136:143–148.  https://doi.org/10.1016/0304-8853(94)90458-8 CrossRefGoogle Scholar
  25. Leong KH, Monash P, Ibrahim S, Saravanan P (2014) Solar photocatalytic activity of anatase TiO2 nanocrystals synthesized by non-hydrolitic sol–gel method. Sol Energy 101:321–332.  https://doi.org/10.1016/j.solener.2014.01.006 CrossRefGoogle Scholar
  26. Miranda SM, Lopes FVS, Rodrigues-Silva C, Martins SDS, Silva AMT, Faria JL, Boaventura RAR, Vilar VJP (2015) Solar photocatalytic gas-phase degradation of n-decane—a comparative study using cellulose acetate monoliths coated with P25 or sol-gel TiO2 films. Environ Sci Pollut Res 22(2):820–832.  https://doi.org/10.1007/s11356-014-2952-2 CrossRefGoogle Scholar
  27. Morel AL, Nikitenko SI, Gionnet K, Wattiaux A, Lai-Kee-Him J, Labrugere C, Chevalier B, Deleris G, Petibois C, Brisson A, Simonoff M (2008) Sonochemical approach to the synthesis of Fe3O4@SiO2 core–shell nanoparticles with tunable properties. ACS Nano 2(5):847–856.  https://doi.org/10.1021/nn800091q CrossRefGoogle Scholar
  28. Nejat R, Mahjoub AR (2016) Magnetically water-dispersible and recoverable rhodium organometallic catalyst derived from Wilkinson’s catalyst for promoting organic reactions. Appl Organometl Chem 31(7).  https://doi.org/10.1002/aoc.3657
  29. Nejat R, Chamack M, Mahjoub A (2017) Active and recyclable ordered mesoporous magnetic organometallic catalyst as high-performance visible light photocatalyst for degradation of organic pollutants. Appl Organometal Chem 31(11):e3745.  https://doi.org/10.1002/aoc.3745
  30. Pirhayati M, Kakanejadifard A, Veisi H (2016) A new nano-Fe3O4-supported organocatalyst based on 3,4-dihydroxypyridine: an efficient heterogeneous nanocatalyst for one-pot synthesis of pyrazolo[3,4-b]pyridines and pyrano[2,3-d]pyrimidines. Appl Organomet Chem 30(12):1004–1008.  https://doi.org/10.1002/aoc.3534 CrossRefGoogle Scholar
  31. Prasad C, Sreenivasulu K, Gangadhara S, Venkateswarlu P (2017) Bio inspired green synthesis of Ni/Fe3O4 magnetic nanoparticles using Moringa oleifera leaves extract: a magnetically recoverable catalyst for organic dye degradation in aqueous solution, J. Alloys Compd 700:252–258.  https://doi.org/10.1016/j.jallcom.2016.12.363 CrossRefGoogle Scholar
  32. Richard C, Boule P (1991) Oxidizing species involved in transformations on zinc oxide. J Photochem Photobiol A Chem 60(2):235–243.  https://doi.org/10.1016/1010-6030(91)85063-M CrossRefGoogle Scholar
  33. Taufik A, Saleh R (2017) Synthesis of iron(II,III) oxide/zinc oxide/copper(II) oxide (Fe3O4/ZnO/CuO) nanocomposites and their photosonocatalytic property for organic dye removal. J Colloid Interface Sci 491:27–36.  https://doi.org/10.1016/j.jcis.2016.12.018 CrossRefGoogle Scholar
  34. Yan M, Hua Y, Zhu F, Gu W, Jiang J, Shen H, Shi W (2017) Fabrication of nitrogen doped graphene quantum dots-BiOI/MnNb2O6 p-n junction photocatalysts with enhanced visible light efficiency in photocatalytic degradation of antibiotics. Appl Catal B Environ 202:518–527.  https://doi.org/10.1016/j.apcatb.2016.09.039 CrossRefGoogle Scholar
  35. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120(24):6024–6036.  https://doi.org/10.1021/ja974025i CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sajedeh Tehrani Nejad
    • 1
  • Abdolghafar Abolhosseini Shahrnoy
    • 1
  • Ali Reza Mahjoub
    • 1
  • Niloufar Esmaeili Saloumahaleh
    • 1
  • Zeynab Khazaee
    • 1
  1. 1.Department of ChemistryTarbiat Modares UniversityTehranIran

Personalised recommendations