Environmental Science and Pollution Research

, Volume 25, Issue 11, pp 10720–10729 | Cite as

Arsenic hyperaccumulation in Pityrogramma calomelanos L. (Link): adaptive traits to deal with high metalloid concentrations

  • Naiara Viana Campos
  • Samara Arcanjo-Silva
  • Larisse Freitas-Silva
  • Talita Oliveira de Araújo
  • Daniela Pinto Souza-Fernandes
  • Aristéa Alves Azevedo
Research Article


Pityrogramma calomelanos is interestingly the single non-Pteris arsenic (As)-hyperaccumulating fern. It has been pointed as a potential species for phytoremediation and a model plant to study the As toxicity and its mechanisms of action. In order to investigate the morphoanatomical traits associated to As tolerance, P. calomelanos plants were exposed to different As concentrations in hydroponic solution. At low As dose (1 mM As), 90% of the As accumulated in plants was allocated in shoots, and no symptoms of As stress were observed in fronds and roots. Under higher As exposure (10 and 30 mM As), 81–74% of the total As in plants was present in shoots, and apical and marginal necroses on pinnae were observed. Anatomical observations showed that As induces damages mainly in the secondary veins and adjacent cells. High amounts of phenols were observed in pinna tissues of control and treated plants. In the roots, As promoted slight alterations as detachment of border-like cells and accumulation of granular substances in cortical cells. The high root-to-shoot As translocation and the constitutive presence of phenols and border-like cells protecting the root tips showed to be adaptive traits that allow P. calomelanos to survive in contaminated sites.


Metalloid Translocation Phenols Anatomic alterations Border-like cells Tolerance 



The authors are grateful to FAPEMIG (Foundation for Research Support of Minas Gerais) for the doctoral scholarship of N. V. Campos and financial support to the project APQ-02070-11, and to CNPq (National Council for Scientific and Technological Development) for providing research scholarship to A. A. Azevedo (309756/2016-2).


  1. Agency for Toxic Substances and Disease Registry (ATSDR) (2000) Toxicological profile for arsenic TP-92/09. Center for Disease Control, AtlantaGoogle Scholar
  2. Balestri M, Ceccarini A, Forino LM, Zelko I, Martinka M, Lux A, Castiglione MR (2014) Cadmium uptake, localization and stress-induced morphogenic response in the fern Pteris vittata. Planta 239(5):1055–1064. CrossRefGoogle Scholar
  3. Campos NV, Arcanjo-Silva S, Viana IB, Batista BL, Barbosa F, Loureiro ME, Ribeiro C, Azevedo AA (2015) Arsenic-induced responses in Pityrogramma calomelanos (L.) Link: arsenic speciation, mineral nutrition and antioxidant defenses. Plant Physiol Biochem 97:28–35. CrossRefGoogle Scholar
  4. Campos NV, Araújo TO, Arcanjo-Silva S, Freitas-Silva L, Azevedo AA, Nunes-Nesi A (2016) Arsenic hyperaccumulation induces metabolic reprogramming in Pityrogramma calomelanos to reduce oxidative stress. Physiol Plant 157(2):135–146. CrossRefGoogle Scholar
  5. Chen T, Huang Z, Huang Y, Xie H, Liao X (2003) Cellular distribution of arsenic and other elements in hyperaccumulator Pteris nervosa and their relations to arsenic accumulation. Chin Sci Bull 48:1586–1591Google Scholar
  6. Chung J-Y, Yu S-D, Hong Y-S (2014) Environmental source of arsenic exposure. J Prev Med Public Health 47(5):253–257. CrossRefGoogle Scholar
  7. Ditusa SF, Fontenot EB, Wallace RW, Silvers MA, Steele TN, Elnagar AH, Dearman KM, Smith AP (2016) A member of the phosphate transporter 1 (Pht1) family from the arsenic-hyperaccumulating fern Pteris vittata is a high-affinity arsenate transporter. New Phytol 209(2):762–772. CrossRefGoogle Scholar
  8. Forino LMC, Castiglione MR, Bartoli G, Balestri M, Andreucci A, Tagliasacchi AM (2012) Arsenic-induced morphogenic response in roots of arsenic hyperaccumulator fern Pteris vittata. J Hazard Mater 235–236:271–278CrossRefGoogle Scholar
  9. Francesconi K, Visoottiviseth P, Sridokchan W, Goessler W (2002) Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic contaminated soils. Sci Total Environ 284(1-3):27–35. CrossRefGoogle Scholar
  10. Gonzaga M, Ma L, Santos J (2007) Effects of plant age on arsenic hyperaccumulation by Pteris vittata L. Water Air Soil Pollut 186(1–4):289–295. CrossRefGoogle Scholar
  11. He Z, Yan H, Chen Y, Shen H, Xu W, Zhang H, Shi L, Zhu YG, Ma M (2016) An aquaporin PvTIP4;1 from Pteris vittata may mediate arsenite uptake. New Phytol 209(2):746–761. CrossRefGoogle Scholar
  12. Hokura A, Omuma R, Terada Y, Kitajima N, Abe T, Saito H, Yoshida S, Nakai I (2006) Arsenic distribution and speciation in an arsenic hyperaccumulator fern by X-ray spectrometry utilizing a synchrotron radiation source. J Anal At Spectrom 21(3):321–328. CrossRefGoogle Scholar
  13. Huang Z, An Z, Chen T, Lei M, Xiao X, Liao X (2007) Arsenic uptake and transport of Pteris vittata L. as influenced by phosphate and inorganic arsenic species under sand culture. J Environ Sci 19(6):714–718. CrossRefGoogle Scholar
  14. Indriolo E, Na G, Ellis D, Salt DE, Banks JA (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22(6):2045–2205. CrossRefGoogle Scholar
  15. Johansen DA (1940) Plant microtechnique. McGraw-Hill, New YorkGoogle Scholar
  16. Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  17. Kachenko AG, Bhatia NP, Singh B, Siegele R (2007) Arsenic hyperaccumulation and localization in the pinnule and stipe tissues of the gold-dust fern (Pityrogramma calomelanos (L.) Link var. austroamericana (Domin) Farw.) using quantitative micro-PIXE spectroscopy. Plant Soil 300(1-2):207–219. CrossRefGoogle Scholar
  18. Kachenko AG, Grafe M, Singh B, Heald SM (2010) Arsenic speciation in tissues of the hyperaccumulator Pityrogramma calomelanos var. austroamericana using X-ray absorption spectroscopy. Environ Sci Technol 44(12):4735–4740. CrossRefGoogle Scholar
  19. Kopittke PM, De Jonge MD, Menzies NW, Wang P, Donner E, McKenna BA, Paterson D, Howard DL, Lombi E (2012) Examination of the distribution of arsenic in hydrated and fresh cowpea roots using two- and three-dimensional techniques. Plant Physiol 159(3):1149–1158. CrossRefGoogle Scholar
  20. Drzewiecka K, Gąsecka M, Rutkowski P, Magdziak Z, Goliński P, Mleczek M (2018) Arsenic forms and their combinations induce differences in phenolic accumulation in Ulmus laevis Pall. J Plant Physiol 220:34–42. CrossRefGoogle Scholar
  21. Li WX, Chen TB, Huang ZC, Lei M, Liao XY (2006) Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulator Pteris vittata L. Chemosphere 62(5):803–809. CrossRefGoogle Scholar
  22. Lone MI, He Z, Stoffella PJ, Yang X (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ Sci B 9(3):210–220. CrossRefGoogle Scholar
  23. Lorestani B, Cheraghi M, Yousefi N (2012) The potential of phytoremediation using hyperaccumulator plants: a case study at a lead-zinc mine site. Int J Phytoremediation 14(8):786–795. CrossRefGoogle Scholar
  24. Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409(6820):579. CrossRefGoogle Scholar
  25. Marschner H (1995) Mineral nutrition of higher plants. Academic Press, San DiegoGoogle Scholar
  26. Meharg AA, Naylor J, Macnair MR (1994) Phosphorus-nutrition of arsenate-tolerant and non-tolerant phenotypes of velvetgrass. J Environ Qual 23(2):234–238. CrossRefGoogle Scholar
  27. Melendez LB, Silva-Filho EV, Miekeley N, Vieira FA, Sella SM (2011) Determination of arsenic species in P. calomelanos and N. biserrata. J Braz Chem Soc 22(10):1961–1967. CrossRefGoogle Scholar
  28. Mendoza-Cózatl DG, Jobe TO, Hauser F, Schroeder JI (2011) Long-distance transport, vacuolar sequestration and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14(5):554–562. CrossRefGoogle Scholar
  29. Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15:523–530Google Scholar
  30. O’Brien TP, Feder N, Mccully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59(2):368–373. CrossRefGoogle Scholar
  31. Pita-Barbosa A, Gonçalves EC, Azevedo AA (2015) Morpho-anatomical and growth alterations induced by arsenic in Cajanus cajan (L.) DC (Fabaceae). Environ Sci Pollut Res Int 22(15):11265–11274. CrossRefGoogle Scholar
  32. Singh HP, Batish DR, Kohli RK, Arora K (2007) Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul 53(1):65–73. CrossRefGoogle Scholar
  33. Souri Z, Karimi N, Sandalio LM (2017) Arsenic hyperaccumulation strategies: an overview. Front Cell Dev Biol 5:67. CrossRefGoogle Scholar
  34. Sridhar BBM, Han FX, Diehl SV, Monts DL, Su Y (2011) Effect of phytoaccumulation of arsenic and chromium on structural and ultrastructural changes of brake fern (Pteris vittata). Braz J Plant Physiol 23(4):285–293. CrossRefGoogle Scholar
  35. Srivastava M, Ma LQ, Singh N, Singh S (2005) Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J Exp Bot 56(415):1335–1342. CrossRefGoogle Scholar
  36. Tangahu BV, Abdulah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb and Hg) uptake by plants through phytoremediation. Int J Chem Eng 21:1–31. CrossRefGoogle Scholar
  37. Tchounwou PB, Patlolla AK, Centeno JA (2003) Carcinogenic and systemic health effects associated with arsenic exposure–a critical review. Toxicol Pathol 31(6):575–588. Google Scholar
  38. Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ (1995) Análise de solo, plantas e outros materiais. Dissertation, Universidade Federal do Rio Grande do SulGoogle Scholar
  39. Tripathi RD, Tripathi P, Dwivedi S, Dubey S, Chatterjee S, Chakrabarty D, Trivedi PK (2012) Arsenomics: omics of arsenic metabolism in plants. Front Physiol 3:1–14. CrossRefGoogle Scholar
  40. van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334CrossRefGoogle Scholar
  41. Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181(4):777–794. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Naiara Viana Campos
    • 1
    • 2
  • Samara Arcanjo-Silva
    • 1
  • Larisse Freitas-Silva
    • 1
  • Talita Oliveira de Araújo
    • 1
  • Daniela Pinto Souza-Fernandes
    • 1
  • Aristéa Alves Azevedo
    • 1
  1. 1.Departamento de Biologia VegetalUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM)Universidade Federal do Rio de JaneiroMacaéBrazil

Personalised recommendations