Environmental Science and Pollution Research

, Volume 25, Issue 11, pp 10988–10996 | Cite as

Effect of dewatering and composting on helminth eggs removal from lagooning sludge under semi-arid climate

  • Bouchra El Hayany
  • Ghizlen El Mezouari El Glaoui
  • Mohammed Rihanni
  • Amine Ezzariai
  • Abdelouahed El Faiz
  • Mohamed El Gharous
  • Mohamed Hafidi
  • Loubna El Fels
Research Article


In this work, we assessed the drying and composting effectiveness of helminth eggs removal from sewage sludge of a lagoon wastewater treatment plant located in Chichaoua city. The composting was run after mixing sludge with green waste in different proportions: M1 (½ sludge + ½ green waste), M2 (\( \raisebox{1ex}{$2$}\!\left/ \!\raisebox{-1ex}{$3$}\right. \) sludge + \( \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$3$}\right. \) green waste), and M3 (\( \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$3$}\right. \) sludge + \( \raisebox{1ex}{$2$}\!\left/ \!\raisebox{-1ex}{$3$}\right. \) green waste) for 105 days. The analysis of the dewatered sewage sludge showed a load of 8–24 helminth eggs/g of fresh matter identified as Ascaris spp. eggs (5–19 eggs/g) followed by Toxocara spp. (0.2 to 2.4 eggs/g); Hookworm spp. and Capillaria spp. (0.4–1 egg/g); Trichuris spp., Taenia spp., and Shistosoma spp. (< 1 egg/g) in the untreated sludge. After 105 days of treatment by composting, we noted a total reduction of helminth eggs in the order of 97.5, 97.83, and 98.37% for mixtures M1, M2, and M3, respectively. The Ascaris spp. eggs were reduced by 98% for M1 and M3 treatments and by 97% for M2 Treatment. Toxocara spp., Hookworm spp., Trichuris spp., Capillaria spp., and Shistosoma spp. eggs were totally eliminated (100% decrease) and the Taenia spp. was absent from the first stage of composting. These results confirm the effectiveness of both dehydrating and composting processes on the removal of helminth eggs.


Lagooning sludge Composting Dewatering process Helminth eggs 



This work is part of the project Research and Development “BOCOMPOSOL” funded by the Moroccan Ministry of the Environment. The project is under the coordination of Professor Mohamed Hafidi (for the 2015–2017 period) laboratory of Ecology and Environment of the Faculty of Sciences Semlalia of Marrakech, Morocco, jointly with ONEE-water section as associated. The authors are thankful to Dr. Ahmed Lebrihi for his language assistance.


  1. AFNOR. Association Française de Normalisation (2000) NF EN 13040Google Scholar
  2. Amahmid O, Asmama S, Bouhoum K (2002) Urban wastewater treatment in stabilization ponds: occurrence and removal of pathogens. Urban Water J 4(3):255–262. CrossRefGoogle Scholar
  3. Arthurson V (2008) Proper sanitization of sewage sludge: a critical issue for a sustainable society. Appl Environ Microbiol 74(17):5267–5275. CrossRefGoogle Scholar
  4. Ayres RM, Mara DD, Silva SA (1993) The accumulation, distribution and viability of human parasitic nematode eggs in the sludge of primary facultative waste stabilization pond. Trans R Soc Trop Med Hyg 87(3):256–258. CrossRefGoogle Scholar
  5. Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, Hotez PJ (2006) Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367(9521):1521–1532. CrossRefGoogle Scholar
  6. Bowman DD, Little MD, Reimers RS (2003) Precision and accuracy of an assay for detecting Ascaris eggs in various biosolid matrices. Water Res 37(9):2063–2072. CrossRefGoogle Scholar
  7. Bundy A (2004) Australian and New Zealand information literacy framework: principles, standards and practice, 2nd edn. Australian and New Zealand Institute for Information Literacy, AdelaideGoogle Scholar
  8. Cappizzi-Banas SC, Deloge M, Remy M, Schwartzbrod J (2004) Liming as an advanced treatment for sludge sanitisation: helminth eggs elimination—Ascaris eggs as model. Water Res 38(14-15):3251–3258. CrossRefGoogle Scholar
  9. El Fels L, Zamama M, El Asli A, Hafidi M (2014a) Assessment of biotransformation of organic matter during co-composting of sewage sludge-lignocelullosic waste by chemical, FTIR analyses, and phytotoxicity tests. Int Biodeterior Biodegrad 87:128–137. CrossRefGoogle Scholar
  10. El Fels L, Hafidi M, Barie F, Ouhdouch Y, El Asli A (2014b) Effect of co-composting on helminth eggs removal. Environ Eng Manag J (in press)Google Scholar
  11. El Fels L, Hafidi M, Ouhdouch Y (2016) Date palm and the activated sludge co-composting actinobacteria sanitization potential. Environ Technol 37(1):129–135. CrossRefGoogle Scholar
  12. Feachem RG, Bradley DJ, Garelick H, Mara DD (1983) Sanitation and disease health aspects of excreta and wastewater management. Wiley, ChichesterGoogle Scholar
  13. Gantzer C, Gaspard P, Galvez L, Huyard A, Dumouthier N, Schwartzbrod J (2001) Monitoring of bacterial and parasitological contamination during various treatment of sludge. Water Res 35(16):3763–3770. CrossRefGoogle Scholar
  14. Gaspard PG, Schwartzbrod J (2003) Parasite contamination (helminth eggs) in sludge treatment plants: definition of a sampling strategy. Int J Hyg Environ Health 206:117–122. CrossRefGoogle Scholar
  15. Gaspard PG, Wiart J, Schwartzbrod J (1997) Sludge hygienization: helminth eggs (Ascaris ova) destruction by lime treatment. Recent Res Devel Microbiol 1:77–83Google Scholar
  16. Ghiglietti R, Genchi C, DiMatteo L, Calcaterra E, Colombi A (1997) Survival of Ascaris suum eggs in ammonia-treated wastewater sludges. Bioresour Technol 59(2–3):195–198. CrossRefGoogle Scholar
  17. Hartenstein R (1981) Sludge: decomposition and stabilization. Science 212(4496):743–749. CrossRefGoogle Scholar
  18. Haug RT (1993) The practical handbook of compost engineering. Lewis Publishers, Boca RatonGoogle Scholar
  19. Karkashan A, Khallaf B, Morris J, Thurbon N, Rouch D, Smith SR, Deighton M (2015) Comparison of methodologies for enumerating and detecting the viability of Ascaris eggs in sewage sludge by standard incubation-microscopy, the BacLight Live/Dead viability assay and other vital dyes. Water Res 68:533–544. CrossRefGoogle Scholar
  20. Keffala C, Harerimana C, Vasel JL (2012) Oeufs d’helminthes dans les eaux usées et les boues de station d’épuration: enjeux sanitaires et intérêt du traitement par lagunage. Environ Risques Sante 11:440–442Google Scholar
  21. Khalil AI, Beheary MS, Salem EM (2001) Monitory of microbial population and their cellulolytic activities during the composting of municipal solid wastes. World J Microb Biot 17(2):155–161. CrossRefGoogle Scholar
  22. Kołecka K, Gajewska M, Obarska-Pempkowiak H, Rohde D (2017) Integrated dewatering and stabilization system as an environmentally friendly technology in sewage sludge management in Poland. Ecol Eng 98:346–353CrossRefGoogle Scholar
  23. Konaté Y, Maiga AH, Basser D, Cassellas C, Picot B (2013) Parasite removal by waste stabilisation pond in Burkina Faso, accumulation and inactivation in sludge. Ecol Eng 50:101–106. CrossRefGoogle Scholar
  24. Koné D, Cofie O, Zurbrugg C, Gallizzi K, Moser D, Drescher S, Strauss M (2007) Helminth eggs inactivation efficiency by faecal sludge dewatering and co-composting in tropical climates. Water Res 41:4397–4402CrossRefGoogle Scholar
  25. Lozano R (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet 380(9859):2095–2128. CrossRefGoogle Scholar
  26. Maya C, Torner-Morales FJ, Lucario ES, Hernández E, Jiménez B (2012) Viability of six species of larval and non-larval helminth eggs for different conditions of temperature, pH and dryness. Water Res 46(15):4770–4782. CrossRefGoogle Scholar
  27. Parkhouse RME, Harrison LJS (2014) Helminth-Cestode: Taenia saginata and Taenia solium. Encycl Food Saf 2:70–77CrossRefGoogle Scholar
  28. Pecson BM, Barriosb JA, Jiménezb BA, Nelsona KL (2007) The effects of temperature, pH, and ammonia concentration on the inactivation of Ascaris eggs in sewage sludge. Water Res 41(13):2893–2902. CrossRefGoogle Scholar
  29. Pullan RL, Smith JL, Jasrasaria R, Brooker SJ (2014) Global numbers of infection and disease burden of soil-transmitted helminth infections in 2010. Parasit Vector 7(1):37. CrossRefGoogle Scholar
  30. Reilly M (2001) The case against land application of sewage sludge pathogens. CanJ Infect Dis 12(4):205–207. CrossRefGoogle Scholar
  31. Reimers RS, Desocio ER, Bankston WS, Oleszkiewicz JA (1998) Current/future advances in biosolids disinfection processing. Proceedings Weftec 98, Orlando, pp 445–459Google Scholar
  32. Rocha M, Barés M, Braga M (2016) Quantification of viable helminth eggs in samples of sewage sludge. Water Res 103:245–255. CrossRefGoogle Scholar
  33. Sæbø A, Ferrini F (2006) The use of compost in urban green areas—a review for practical application. Urban For Urban Green 4(3–4):159–169. CrossRefGoogle Scholar
  34. Sanguinetti GS, Tortul C, Garcia MC, Ferrer V, Montangero A, Strauss M (2005) Investigating helminth eggs and Salmonella sp. in stabilization ponds treating septage. Water Sci Technol 51(12):239–247Google Scholar
  35. Schuh R, Philipp W, Strauch D (1985) Influence of sewage sludge with and without lime treatment on the development of Ascaris suum eggs. In: Strauch D, Havelaar AH, L’Hermite PL (eds) Inactivation of Microorganisms in Sewage by Stabilisation Processes. Elsevier applied science publishers, London, pp 100–113Google Scholar
  36. Schwartzbrod J (2003) Quantification and viability determination for helminth eggs in sludge (modified EPA method 1999), University of NancyGoogle Scholar
  37. Sene M (1994) Etude de la Schistosomose intestinale à Schistosoma mansoni chez les rongeurs sauvages à Richard-Toi1 (Sénégal): Suivi de L’infestation naturelle et transmission expérimentale. Dissertation, Université Cheikh Anta Diop de DakarGoogle Scholar
  38. Shuval HI (ed) (1977) Water renovation and reuse. Academic Press Publish, New York, p 463Google Scholar
  39. Stephenson LS (2009) Nutritional and economic implications of soil-transmitted helminths with special reference to Ascariasis. In: Lifshitz F (ed) Clinical disorders in pediatric gastroenterology and nutrition. Marcel Dekker, New York, pp 390–409Google Scholar
  40. Straub TM, Pepper IL, Gerba CP (1993) Hazards from pathogenic microorganisms in land-disposed sewage sludge. Rev Environ Contam Toxicol:132, 55–191Google Scholar
  41. Sylla I, Belghyti D (2008) Analyse parasitologique des eaux usées brutes de la ville de Sidi Yahia du Gharb (Maroc). World J Biol Res 001(2):1–10Google Scholar
  42. Szabová E, Juriš P, Papajová I (2010) Sanitation composting process in different seasons. Ascaris suum as model. Waste Manag 30(3):426–432. CrossRefGoogle Scholar
  43. Vinneras B, Björklung A, Jönsson H (2003) Thermal composting of faecal matter as treatment and possible disinfection method- laboratory-scale and pilot-scare studies. Bioresour Technol 88(1):47–54. CrossRefGoogle Scholar
  44. Wang T, Guo X, Hong Y, Han H, Cao X, Han Y, Zhang M, Wu M, Fu M, Lu K, Li L, Zhao Z, Lin J (2016) Comparison of apoptosis between adult worms of Schistosoma japonicum from susceptible (BALB/c mice) and less-susceptible (Wistar rats) hosts. Gene 592(1):71–77. CrossRefGoogle Scholar
  45. WHO-World Health Organization (2006) Guidelines for the safe use of wastewater, excreta and greywater. Volume 4: Excreta and Greywater Use in Agriculture. World Health Organization Press, GenevaGoogle Scholar
  46. Wichuk KM, Mc Cartney D (2007) A review of the effectiveness of current time-temperature regulations on pathogen inactivation during composting. J Environ Eng Sci 6(5):573–586. CrossRefGoogle Scholar
  47. Yanko WA (1988) Occurrence of pathogens in distribution and marketing municipal sludges. US Environmental Protection Agency, health effects research laboratory, project summary (SuDoc EP 1.89/2:600/S 1-87/014)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bouchra El Hayany
    • 1
  • Ghizlen El Mezouari El Glaoui
    • 1
    • 2
  • Mohammed Rihanni
    • 2
  • Amine Ezzariai
    • 1
  • Abdelouahed El Faiz
    • 1
  • Mohamed El Gharous
    • 3
  • Mohamed Hafidi
    • 1
  • Loubna El Fels
    • 1
    • 4
  1. 1.Laboratoire Ecologie et Environnement (Unité associée au CNRST, URAC 32), Faculté des Sciences SemlaliaUniversité Cadi Ayyad MarrakechMarrakeshMorocco
  2. 2.Laboratoire Biotechnologie Marines et de l’Environnement, Faculté des Sciences El JadidaUniversité Chouaib DoukkaliEl JadidaMorocco
  3. 3.University Mohammed VI PolytechnicBenguerirMorocco
  4. 4.Institut Supérieur des Professions Infirmières et Techniques de SantéMarrakesh - SafiMorocco

Personalised recommendations